

Physics Equations Sheet GCSE Further Additional Science/Physics (FAS3 and PH3)

$s = v \times t$	s distancev speedt time
refractive index = $\frac{\sin i}{\sin r}$	i angle of incidencer angle of refraction
$magnification = \frac{image \ height}{object \ height}$	
$P = \frac{1}{f}$	P powerf focal length
refractive index = $\frac{1}{\sin c}$	c critical angle (Higher Tier only)
$T=\frac{1}{f}$	T periodic timef frequency
$M = F \times d$	 M moment of the force F force d perpendicular distance from the line of action of the force to the pivot
$P = \frac{F}{A}$	P pressureF forceA cross-sectional area
$\frac{V_{\rm p}}{V_{\rm s}} = \frac{n_{\rm p}}{n_{\rm s}}$	$V_{\rm p}$ potential difference across the primary coil $V_{\rm s}$ potential difference across the secondary coil $n_{\rm p}$ number of turns on the primary coil $n_{\rm s}$ number of turns on the secondary coil
$V_p \times I_p = V_s \times I_s$	$V_{\rm p}$ potential difference across the primary coil $I_{\rm p}$ current in the primary coil $V_{\rm s}$ potential difference across the secondary coil $I_{\rm s}$ current in the secondary coil