Version 1.0

General Certificate Secondary of Education January 2011

Methods in Mathematics (Pilot) 9365

Unit 1 Higher Tier 93651H

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

- M Method marks are awarded for a correct method which could lead to a correct answer.
- A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
- **B** Marks awarded independent of method.
- **Q** Marks awarded for quality of written communication. (QWC)
- **M dep** A method mark dependent on a previous method mark being awarded.
- **B dep** A mark that can only be awarded if a previous independent mark has been awarded.
- ft Follow through marks. Marks awarded following a mistake in an earlier step.
- **SC** Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.
- **oe** Or equivalent. Accept answers that are equivalent.

eg, accept 0.5 as well as $\frac{1}{2}$

M1 Higher Tier

Section A

Q	Answer	Mark	Comments
		1	
1	<u>19</u> 12	B1	oe 1 ⁷ / ₁₂ , 1.58(3)
	1.583 or 1.5833	Q1	QWC Strand (i) – Must be correct notation
			Changes their fraction correctly into a recurring decimal
			eg, $\frac{7}{12} = 0.583$ or 0.5833

2	10 red and 10 blue in bag A	M1	20 marbles in bag A
	10 red and 30 blue in bag B	M1	40 marbles in bag B
	20 red and 40 blue	A1	
	$\frac{40}{60}$	B1 ft	oe $\frac{2}{3}$ ft $\frac{\text{their blue total}}{\text{their total}}$

3(a)	The students who didn't visit either country	B1	(F U S)' F' ∩ S'
3(b)	217	B1	
3(c)	7 217	B1 ft	oe $\frac{1}{31}$ 0.032() ifw
3(d)	$\frac{7}{38}$	B2	oe 0.18() B1 For either, but not $\frac{7}{217}$

4(a)	–0.6 and 1.6	B2	B1 For each SC1 –0.3 and 1.3 or –0.8 and 1.8
4(b)	Any number between –0.6 and 1.6	B1ft	Between their two values in (a)

5	1 – 0.1 (= 0.9)	M1	Their three values add up to 0.9
	Their 0.9 ÷ 6 (= 0.15)	M1Dep	
	0.15, 0.3 and 0.45	A1	SC2 Correct numbers in wrong order
			SC1 P(C) = 2P(B) and P(D) = 3P(B), with all probabilities between, but not including, 0 and 1

Q	Answer	Mark	Comments
		I	
6(a)	2y = 9x + 7	B3	Changes the division by 2 to a multiplication by 2
	2y - 7 = 9x		Changes the addition of 7 to a subtraction of 7
	$x = \frac{2y-7}{9}$		Changes the multiplication by 9 to a division by 9
			B2 Any two of the above
			B1 Any one of the above
6(b)	$3\left(\frac{x^2+4x+3}{6}\right) - \left(\frac{3x^2+1}{6}\right)$	M1	
	$\frac{3x^2 + 12x + 9}{6} - \frac{3x^2 + 1}{6}$	M1	Allow one error
	12 <i>x</i> +8	M1 Dep	Dep on 2 nd M1
	6		Correct simplification of their expression
	$\frac{2(6x+4)}{6} = \frac{6x+4}{3}$	A1	Accept cancelling of 12, 8 and 6
Alt 1 6(b)	$6\left(\frac{x^2+4x+3}{2}\right)-6\left(\frac{3x^2+1}{6}\right)$	M1	
	$3x^2 + 12x + 9 - 3x^2 - 1$	M1	Allow one error
	12x + 8	M1 Dep	Dep on 2 nd M1
			Correct simplification of their expression
	$6\left(\frac{6x+4}{3}\right) = 2(6x+4) = 12x+8$	A1	
Alt 2 6(b)	$x^{2} + 4x + 3 - \frac{2(3x^{2} + 1)}{6} = \frac{2(6x + 4)}{3}$	M1	
	$6(x^2 + 4x + 3) - 2(3x^2 + 1) = 4(6x + 4)$	M1	
	$6x^2 + 24x + 18 - 6x^2 - 2 = 24x + 16$	M1	
	24x + 16 = 24x + 16	A1	

Q	Answer	Mark	Comments
Alt 3 6(b)	$\frac{x^2}{2} + \frac{4x}{2} + \frac{3}{2} - \frac{3x^2}{6} - \frac{1}{6}$	M1	Allow one error
	$2x + \frac{8}{6}$	M1	Correct simplification of their $\frac{x^2}{2} + \frac{4x}{2} + \frac{3}{2} - \frac{3x^2}{6} - \frac{1}{6}$
	$2x + \frac{4}{3}$	M1	Correct simplification of fractional part of their $2x + \frac{8}{6}$
	$\frac{6x}{3} + \frac{4}{3} = \frac{6x+4}{3} \text{ or}$ $\frac{6x+4}{3} = 2x + \frac{4}{3}$	A1	Allow recurring decimals throughout Allowing rounded decimals to M3

7	0.08	M1	oe
	8×10^{-2}	A1	

8(a)	0.2	B1	oe
	0.7, 0.3 and 0.7	B1	oe
8(b)	0.8 × 0.3	M1	oe
	0.24	A1	oe

9(a)	$A = kR^2 \text{ or } A \propto R^2$	M1	
	$(k =) \frac{2826}{30^2}$	M1	
	$A = 3.14R^2$	A1	oe Accept k = 3.14 with first M1 awarded from A = kR ² SC2 3.14R ²
9(b)	(A =) their 3.14×15^2	M1	Must be from kR ²
	706.5	A1 ft	

Q	Answer	Mark	Comments
10(a)	Draws correct graph	B1	Through (0, 0) \pm 2 mm
10(b)	Draws correct graph in 1 st quadrant	B1	Not through axes
	Draws correct graph in 3rd quadrant	B1	2 nd and 4 th quadrants must be blank
10(c)(i)	Graph drawn above	B1	Disallow any intersection
10(c)(ii)	Graph drawn reflected in x-axis	B1	

Section B

11(a)	3k + 12	B1	
11(b)	$x^2 - x$	B1	Condone $x^2 - 1x$
11(c)	4 <i>y</i> (2 <i>y</i> + 1)	B2	Condone $(4y \pm 0)(2y + 1)$ B1 For $4(2y^2 + y)$ or $y(8y + 4)$ or $2y(4y + 2)$ or $2(4y^2 + 2y)$

12(a)	250 ÷ 100 × 15 (= 37.5)	M1	oe 250 × 0.15
	250 + their 37.5	M1Dep	250 × 1.15 gets M2
	287.5	A1	
12(b)	600 ÷ 75 (= 8)	M1	600 ÷ 3 (= 200)
	Their 8 × 100	M1Dep	Their 200 × 4
			600 ÷ 0.75 gets M2
	800	A1	
12(c)	120 ÷ 10 × 2 × 20	M1	24×20 , 120×4 Correct method seen to get 480
	480	A1	

13	53	B1	
	2-digit prime < 20	B1	11, 13, 17 or 19
	2-digit square, not 64	B1	
	531749	B1 ft	Six different digits if B2 awarded SC1 174953 or 495317

Q	Answer	Mark	Comments
14	5x - 2 = 3x + 6	M1	Any letter allowed
	2x = 8	M1	M2 Explains that 2 vouchers $=$ £8
	4	A1	
		Q1	Strand (iii) - Clear and organised solution Forms and solves equation or Gives difference as 8 or Shows that 4 gives the same answer of 18 for both

15	72 ÷ 9 × 4	M1	72 ÷ 9 × 5
	32 and 40	A1	
	Their 40 – $\frac{72}{2}$	M1	$\frac{72}{2}$ – their 32
	4	A1	
15 Alt 1	72 ÷ 9 × 5	M1	72 ÷ 9 × 4
	32 and 40	A1	
	(their 40 – their 32) ÷ 2	M1	8 ÷ 2
	4	A1	
15 Alt 2	1 part of money is $\frac{72}{9}$	M1	
	8	A1	
	Their 8 ÷ 2	M1	
	4	A1	

16	n and n+2	M1	Allow any letter
	n(n + 2)	M1	
	$n^2 + 2n + 1$	A1	SC1 $xy + 1$ any letters
	$(n + 1)^2$	Q1	QWC Strand (ii) - Correct algebra throughout with all steps clearly seen

Q	Answer	Mark	Comments
17	$x^{2}(1, 7x, 7x) = 10$	N/1	
	x (+7x - 7x) - 10		
	(x + 4)(x - 4)	A1	Allow $a = 4$
18	$4 \times 4^{x} (= 4^{8})$	M1	$4^{x} = 16384$
	7	A1	
10(-)		N44	
19(a)	√45	INIT	
	3√5	A1	
19(b)	$x^{2} + (x + 9)^{2} (= 45)$	M1	
	$x^2 + x^2 + 18x + 81 (= 45)$	M1	
	$2x^2 + 18x + 36 = 0$	A1	$x^2 + 9x + 18 = 0$
	(2)(x+3)(x+6) (= 0)	M1 ft	Correct factorisation or substitution into the quadratic formula for their quadratic expression
	x = -3 and $x = -6$	A1	Either point from correct working
	(-3, 6) and (-6, 3)	A1	Other point from correct working
			SC2 either point with no or insufficient working
Alt 19(b)	$y^2 + (y - 9)^2 (= 45)$	M1	
	$y^2 + y^2 - 18y + 81$ (= 45)	M1	
	$2y^2 - 18y + 36 = 0$	A1	$y^2 - 9x + 18 = 0$
	(2)(y - 3)(y - 6) (= 0)	M1 ft	Correct factorisation or substitution into the quadratic formula for their quadratic expression
	y = 3 and $y = 6$	A1	Either point from correct working
	(-3, 6) and (-6, 3)	A1	Other point from correct working SC2 Either point with no or insufficient working