

GCSE MARKING SCHEME

MATHEMATICS - TWO TIER LEGACY
NOVEMBER 2011

INTRODUCTION

The marking schemes which follow were those used by WJEC for the November 2011 examination in GCSE MATHEMATICS - TWO TIER LEGACY. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

	Page
Mathematics Paper 1 - Foundation Tier	1
Mathematics Paper 2 - Foundation Tier	4
Mathematics Paper 1 - Higher Tier	7
Mathematics Paper 2 - Higher Tier	9

PAPER 1 – FOUNDATION TIER

2011 Autumn Paper 1 (Non calculator)		FINAL POST CONFERENCE MAR	K SCHEME
Foundation Tier	Marks	Comments (14/11/2011)	(Page 1)
1. (a) (i) 23062	B1	C.A.O.	, 6
(ii) eighty five thousand (one) hundred (and) five	B1	C.A.O.	
(b) (i) 23, 47	B1	C.A.O.	
(ii) 88, 46	B1	C.A.O.	
(iii) 49	B1	Accept 7×7 OR 7 ²	
() () 5520	D.1		
(c) (i) 5630	B1	C.A.O. C.A.O.	
(ii) 5600	B1	C.A.O.	
(d) 1, 3, 5, 15	B2	B1 for any 2 or 3 factors and no incorrect nu OR the 4 correct factors and 1 incorrect num	
(e) (i) 9832	B1	C.A.O.	
(i) 2398	B1	C.A.O.	
()			
	11		
2. (a) 9 12 11 7 1	B2	B1 for any three correct (tallies and)	<u>Frequencies</u>
(Total -) 40	B1	frequencies.	take
(Total =) 40 (b) E	B1	F.T. their frequencies. If frequencies get 0 F.T. their table of frequencies	<u>precedence</u> <u>over tallies</u>
(b) E	D1	B0 for 12, but E and 12 is B1	If freq. score 0
		20 101 12, 0 00 2 0110 12 13 21	then all correct
(c) A, E, N, S, T along one axis	B1	OR indicated on the bars themselves	tallies score B1
Uniform scale for the frequency axis starting at 0	B1	F.T. their table of frequencies.	
(No numbers interpreted as 1-12 in ones)		Use of any other scale must be clearly	
E' as how at a some of he's his	D2	indicated on graph	
Five bars at correct heights	B2	B1 for at least 3 correct bars on F.T. Bars can be of varying width	
	8	B1 for 5 correct bars with frequency	
		polygon	
3. (a)	D.1		
cuboid	B1	C.A.O.	
trapezium	B1 B1	<u>Line to parallelogram gets B0</u> C.A.O.	
pentagon equilateral triangle	B1	C.A.O.	
1-1			
	B1	Clear intent to be parallel.	
(b) parallel line	D1		
(a) Lines	B1	ET the ends of their lines	
(c) Lines Curve	B1 7	F.T. the ends of their lines	
4. (a) (i) 40	B1	C.A.O.	
(ii) 58	B1	C.A.O.	
(b) ·75	B1	C.A.O.	
.76	B1	C.A.O.	
$.72 \frac{3}{4} 76\%$	B1 5	Or equivalent. Correct answer OR F.T. their	values.
5. (a) 11 × 5	M1		
= 55	A1	C.A.O.	
2		Candidates who get 55 then multiply by 2 et	c get M0, A0.
cm ²	U1	Independent of other marks	
(b) 32 (cm)	B1	C.A.O.	
(=, == (=)	4		

2011 Autumn Paper 1 (Non calculator) Foundation Tier	Marks	FINAL POST CONFERENCE MARK SCHEME Comments (14/11/2011) (Page 2)
6. (a) 000000		
• • • • • • •	B1	C.A.O.
0000000		
(b) 8 10	B1	C.A.O.
16 20	B1	C.A.O.
(c) (i) 90	D.1	
(ii) 100	B1 B1	C.A.O. C.A.O.
	5	C.A.O.
7. All 3 quadrants correct.	В3	B1 for each correct quadrant.
	3	
8. (a) 36 × 48	M1	Any correct complete method for the multiplication of 36 by 48
288	A1	For either 288 or 1440
1440		
1728 = 1728 (bottles)	A1	C.A.O.
1720 (contes)		Place value errors get M0, A0, A0
(b) e.g. $1\% = 3$ AND $8\% = 3 \times 8$	M1	Any valid method
24	A1	M1 for $\frac{8}{100} \times 300 \text{ OR } \frac{2400}{100}$
		SC1 for (un)supported 24% OR (0).24
		M1, A0 if they go on to 300±24
	5	£24 gets M1, A1
9. Procedure for marking Q9	B1	Reversed coordinates get 0 each time.
(5, 1) 1. Mark any writen coords. up to 8 independent	B1	-
(5, 5) ones as B1 if correct, -1 if incorrect down to 0. (-3, 1) 2. If the mark is 4 or 3 then STOP at that point.	B1 B1	Penalise -1 once only for incorrect coordinate notation e.g. (x5,y1).
(-3, 5) 3. If the mark is 2 award an extra B1 if all 4		(and 1/2 //
correct points are plotted unambiguously. 4. If the mark is 1 or 0 then use the SCs in the		SC2 for ONLY all the 4 correct points on the diagram
right hand column of this Mark Scheme.		OR SC1 for any 2 correct points (out of a maximum of 4
	4	points) on diagram.
10.		Ignore x= OR =x OR y= etc. Ignore use of capital letter but use of a different letter is
		penalised –1 once only.
(a) $x - 8$ (p) <u>I.S.W.</u>	B1	C.A.O.
(b) 70b (g) <u>I.S.W.</u> (c) 14	B1 B2	Allow $70 \times b$ OR $b \times 70$ OR $b70$. $70+b=70b$ gets $B0$ B1 for either -6 OR 20
(d) 7c – 3d	B2	B1 for either 7c OR – 3d in an expression of the form ac±bd
(e) 2x + 6 <u>I.S.W</u>	B1	B1 for 7c + – 3d C.A.O.
(C) ZA O 200-11	7	0.1.0.

2011 Autumn Paper 1 (Non calculator)		FINAL POST CONFERENCE MARK SCHEME
Foundation Tier	Marks	Comments (14/11/2011) (Page 3)
11.	3.64	Look at their diagram also
(a) $(180-52)/2$	M1	CAO
= 64 (°) (x=) 116 (°)	A1 B1	C.A.O. F.T. 180 – 'their 64', but F.T. 52 only if it is shown to be
(X=) 110 ()	DI	the right hand 'base' angle in the triangle.
(b) Internal angle = 95	B1	C.A.O.
(y =)360 - 100 - 68 - 95	M1	F.T. 'their 95'
= 97 (°)	A1	Watch for 180+85-100-68 which is correct for the M1
12 () 17 11 7	6	B1M0A0 for y = 95 only seen
12. (a) $AB = 11.5 \text{ cm}$	B1	Allow ±2mm. That is, allow 11·3 to 11·7.
AB (in km) = 11.5×5	M1	F.T. their AB
= 57.5 (km)	A1	1717 (11011 1212
		Use overlay
(b) Bearing	B1	Allow ±2°
Distance	B1	Allow ±2mm
12 (a) Esta ('a l'arta la a 'arta') AND a constant	5 D2	D1 Comment and a day in a day and a comment in a day and
13. (a) False (indicated or implied) AND a counter- example, e.g. halving 16 ends up as 8	B2	B1 for an explanation that is on the correct lines, but has an error, e.g. '36 divides into 2 to make 18' or '36 \div 2 = 17'
(b) False (indicated or implied) AND a counter-	B2	B1 for an explanation that is on the correct lines, but has an
example, e.g. 33 is not prime	D2	error.
	4	
14.(a) Strategy, e.g. knowing that the probabilities add	M1	Also for their $P(Red)$ + their $P(Blue) = 0.5$
to 1, or that RED with BLUE is 0.5, or Green the same		Either correct response implies M1 also.
as Red		
RED 0.18 BLUE 0.32	A1 A1	$\frac{\text{C.A.O.}}{\text{C.A.O.}}$
(b) 0.12 + 0.18	M1	<u>C.A.O.</u>
0.3(0) or 30%	A1	
H1	5	
15.(a) 90 (kg), 172 (cm)	B2	B1 for either or if reversed
(b) Positive	B1	Do not accept a description
(c) Suitable line, with some points above and below	B1	No requirement to pass through the means
(d) Answers in the range >60 (kg) but ≤70 (kg) (e) No, with a suitable reason	B1 B1	OR Suitable answer from their line of best fit No maybe implied in their statement
e.g. No as there is no data around 210cm, or	Di	Allow descriptions of the scale to go up to 200.
"graph doesn't go that high"		and we descriptions of the source to go up to 2001
H2 1	6	
$16.(a) 60/80 \times 100$	M1	
75(%)	A1	Allow SC1 for 75/100
(b) $300/12 \times 5$ OR $300/12 \times 7$	M1	Allow for 300/'their 5+7' \times 5 OR \times 7
(£)125 (£) 175	A1 A1	<u>C.A.O.</u> <u>C.A.O.</u>
(c) $75/100 \times 562.80$ OR 34×562.80 OR $281.4(0) +$	M1	<u> </u>
140.7(0)		OR equivalent
(£)422.1(0)	A1	-
Н5	7	
17.(a) 4n + 2	B2	B1 for $4n$ $4+n = 4n$ gets $B0$
(b) $3x + 7x = 8 - 4$	B1 B1	FT until 2^{nd} error Accept $x = -4/-10$
x = 4/10 (or equivalent) ISW. H6	4	Λιτερι x = -4/-10
18.(a) E.g. $2^3 \times 3$ not even powers	E1	Accept 'no number times itself gives 24' only with 4×4
OR 'No WHOLE number multiplied by itself gives		and 5×5 given. Accept $4\times 4=16$ and $5\times 5=25$.
24 OR 2√6 is not a whole number.		Do not accept '16, 25' only.
		Do not accept "not even powers" without $2^3 \times 3$
(b) Method that produces at least 2 correct prime	M1	Before 2 nd error
factors	A 1	Ignore 1s seen
Sight of correct factors $(2, 2, 2, 2, 7)$ $2^4 \times 7$	A1 B1	FT their factors (with at least one index >1 used). Do not ignore 1s.
H7	4	ignore is.
11/	<u> </u>	

PAPER 2 – FOUNDATION TIER

2011 Autumn Paper 2 (Calculator allowed)		FINAL POST CONFERENCE MARK SCHEME
Foundation Tier	Marks	Comments (21/11/2011) (Page 1)
1. (a) (£120.38)	D1	
11.04	B1	C.A.O.
25.38	B1	C.A.O.
3.8(0)	B1	C.A.O.
(£) 160.6(0) <u>I.S.W.</u>	B1	F.T. their figures for one error
(b) e.g. $10\% = 16.06$ $5\% = 16.06/2$	M1	F.T. 'their 160.6'
= (£) 8.03	A1 6	Award M1, A1 for (£)152.57 OR 'their (£)152.57' on F.T.
2. km	B1	C.A.O.
kg	B1	C.A.O.
ℓ	B1	Accept cm ³ OR cc OR ml
m	B1	C.A.O.
111	4	C. I.O.
3. 430 (g)	B1	C.A.O.
190 (g)	B1	C.A.O.
(430 - 190)/40	M1	
= 6 (g)	A1	F.T. 'their 430 – 'their 190'
(0)	4	
4. (a) Wage = $7 \times 15 + 150$	M1	
= (£) 255 ISW	A1	C.A.O.
(b) Number of hours = $(270 - 180) / 15$	M1	Correctly substitution including the division
= 6	A1	C.A.O.
	4	Accept embedded answers such as $270 = 6 \times 15 + 180$
5. (a) Counting squares	M1	•
42 – 48	A1	
210 – 240	B1	F.T. 'their 42–48'×5 <u>correctly calculated</u>
(b) d c b a	B4	B1 for each
	7	
6. (a) R	B1	A marked at 1.
B C A	B1	B should be almost at 0 (0 to under the p in probabilty)
0 1	B1	C marked at centre of the line.
(b) No much on of mucila is add (so not sound	E1	Along these lines
(b) No – number of pupils is odd, (so not equal	E1	Along these lines
number of girls and boys.) OR depends on how many tickets the girls and		No may be implied in their explanation Reason overides the 'Yes' or 'No'' in the comments column
		Reason overides the Tes of No In the comments column
boys bought.	4	
7. Units used = 246 OR 7792×12 – 7546×12	B1	
Cost of units = $(£) 29.52 \frac{OR}{OR} \frac{2952(p)}{29.52}$	B2	F.T. 'their units'. B1 for £2952
Total cost = $(£) 51.77 \frac{OR 2932(p)}{OR 5177(p)}$	B1	F.T. their units : $\frac{BT10132332}{5}$ F.T. for 'their cost of units + £22.25
(a) 31.11 OK 3111(b)	4	1.1.101 then cost of units &22.23
8. (a) angle at A = 54°	B1	± 2°
AC = 12.6	B1	± 2 ± 2 mm
Complete triangle	B1	Only if at least one B1 already awarded
(b) Angle	B1	F.T. if completed triangle joining BC .
		(Allow 46 – 50 in a 'good' triangle)
		Complete 'correct' triangle but reflected gets B2.
	4	
9. (a) Sum = 1176	M1	For attempt to add the numbers (1000 – 1350 will imply M1)
Mean = $1176/8$	m1	For dividing a number by 8 (dependent on the M1)
= 147 (cm)	A1	<u>C.A.O.</u>
(b) 118 120 137 <u>141 151</u> 153 175 181	M1	Arranging the numbers in order (ascending or descending)
		(Award the M1 for 7 of the numbers in correct order)
146	A1	C.A.O.
(c) 63 (cm)	B1	C.A.O.
	6	

2011 Autumn Paper 2 (Calculator allowed)		FINAL POST CONFERENCE MARK SCHEME
Foundation Tier	Marks	Comments (21/11/2011) (Page 2)
10. Door 6 to 8 ft OR 1 · 8 to 2 · 5 metres	B1	<u>Unsupported answers marked as follows</u> :
Door 2.5cm Building = 10cm	B1	feet 12 sc1 24 32 48
Multiplying factor = 4	M1	$\begin{bmatrix} 12 & 12 & SC1 & M1, A1 \text{ (inc)} & 32 & 48 \\ & & & & & & \end{bmatrix} SC1$
Height = door's estimate × their SF (2-6)	IVII	metres
SC1 for answers which:		7.2 10 15
(a) give only door's height as 2.5cm and building height	A1	F.T. their door's height estimate AND scale factors 2 – 6 inc
as 10cm		Correct units for their numerical answer must be shown
OR (b) a proper attempt at 'dividing' the building's		somewhere in their working for this A1
height into equal 'door' heights	4	
11. (a) D	<u>B1</u>	
(b) C	<u>B1</u>	41 4 1
(c) Ran a little then turned back to the start	E1	Along these lines
12 (2) 12 14 20 22	3	CAO
12. (a) 12 14 20 22 11 13 19 21	B2	C.A.O. B1 for any 4
11 13 19 21		DI 101 ally 4
(b) 3/16 ISW	B2	F.T. their table in (b) and (c) NOTES
(,, 2, 23 - 23		B1 for a numerator of 3 in a Penalise –1 for use of
		fraction less than 1. words such as "3 out of
		B1 for the 16 in a fraction <1. 16", "3 in 16" OR "3:16"
		Do not penalise incorrect OR 3 over 16.
		reduction of fractions. When fraction and wrong
		notation seen, DO NOT
(c) $\frac{3}{16} \times 80$	3.//1	penalise wrong notation.
16	M1	F.T. 'their 3/16' if a fraction <1.
		<u>but not ½.</u>
= 15	A1	If they have incorrectly reduced their answer in part (b)
		and use it in part (c), then it is M1, A0 in part (c).
		15/80 gets M1, A0
	6	
13. (a) 2p	B1	
(b) (i) $(x =)$ 75	B1	Accept embedded answers such as $75/5 = 15$
(ii) 3y = 6	B1	Accept embedded answers such as $3 \times 2 + 11 = 17$
(y =) 6/3 ISW (=2)	B1	F.T. until 2 nd error. Final B0 for 6÷3
(c) 2 (d) $35 = 2 \times 4 + 3M$	B1 B1	F.T. until 2 nd error.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B1	1.1. until 2 - CHOL
M = 27/3 ISW (=9)	B1	<u>F.T. aM=b (a≠1)</u>
		Accept embedded answers such as $35 = 2 \times 4 + 3 \times 9$
	8	
14. Cost of all adult tickets = £488.8(0) – 25 × (£)7.6(0)	M1	
= (£) 298.8(0)	A1	C.A.O.
Cost per ticket = $298.8(0)/24$	M1	Em (1 : 200 00) 1 (NOT (0) 100 00
= (£) 12.45	A1	F.T. 'their 298.80' but NOT (£)488.80
		Note: Pupils who interchange the 25 and 24 should be marked as if correct then MR-1.
	4	marked as it correct their wik-1.
15. (a) 11/40 ISW	B2	C.A.O.
20. (4) 11/10 10/1	52	B1 for 11/m in a fraction < 1, B1 for n/40 (if < 1)
		Penalise –1 for incorrect notation such as 11:40 OR 11 out of
		40 etc
(b) $(0\times10) + 1\times19 + 2\times6 + 3\times4 + 4\times1$	M1	Allow one term to be incorrect or missing.
= 47	A1	Allow M1, A0 for 47/40
	4	

2011 Autumn Paper 2 (Calculator allowed)	Manla	FINAL POST CONFERENCE MARK SCHEME
Foundation Tier	Marks	Comments (21/11/2011) (Page 3)
16. (a) $\frac{17}{100} \times (£) 269$	M1	For a correct method of finding 17% and subtracting from 269
= (£) 45.73	B1	C.A.O.
Internet price = $(£)223.27$	A1	F.T. 'their 45.73' if M awarded
•		<u>OR</u>
OR $\frac{83}{100} \times (£) 269$		M1 for a correct method of finding 83%
		B1 for sight of 83
Internet price = $(£)223.27$		A1 C.A.O.
(b) $1/3 \times 2 \times 2 \times 5$	M1	
= 20/3	A1	
7 tins	B1	F.T. 'their 20/3' rounded up.
	6	
17. (a)(i) Their readings at 14:30 & 13:00 and intention to subtract	M1	116 – 64. Allow for 'their readings' with intention to subtract
= 52 (km)	A1	CAO
(ii) 52/1.5	M1	FT their (i) Watch for $144/4$ (= 35) which gets M0, A0
34.666(km / h)	A1	Accept rounded or truncated. However, do not accept an
		answer of 35 without working or from incorrect working
(b) F1	F1	SC1 for an answer of 40
(b) Explanation, e.g. "first half journey in just over an	E1	Accept, e.g. "more vertical", "line increases means it is
hour", "steeper to start" H1	5	quicker"
18.(a) 0.72	B2	B1 for 0.7(17694)
18.(a) 0.72	D2	B1 101 0.7(17094)
(b) Any correct 8% of a value used in workings	B1	Could be (£)128 OR (£)256 OR 'their 117.76'
1600 – 8% of 1600 (= 1600 – 128)	M1	OR M2 for 1600×0.92^2 (M1 for 1600×0.92)
1472 – 8% of 1472 (= 1472 – 117.76)	m1	FT their 128
(£) 1354.24	A1	CAO. Penalise extra working -1
***	_	Appreciate: Possible B1 and SC1 for (£)1866.24
H3ac	6	Simple depreciate: Possible B1 and M1 (1344)
19. 700× 1.64	M1	
= (\$)1148 (Canadian dollars)	A1	ET their recording down to record 50 married M1
Conclusion, has to buy 1100 (Canadian dollars)	A1	FT their rounding down to nearest 50 provided M1
1100 ÷1.64	M1	FT their amount of Canadian dollars 'if changed to a \$50
= 670.73(17)	A1	amount'. Do NOT F.T. 1148 OR 'their 1148'
£670.73	A1	£ must be given. Accept £670.73p
		For example, 1148 changed to 1150 (incorrect) gets M1,
		A1, A0, but on F.T. 1150/1.64 gets M1, 701.21(9) gets A1
		and finally £701.22 gets A1 giving 5 marks in total.
		Accept an answer of '29.27 in credit' or similar, but an
***		answer of 29.27 would not get the final A mark, but do award
H4	6	the previous M1 A1 as alternative method
$20.(a) \frac{1}{2} (8.2 + 12.8) \times 7.6$	M1	
$79.8 \text{ (cm}^2\text{)}$	A1	Accept 80 from working, but unsupported 80 gets M0, A0.
(b) $\frac{1}{2}\pi \times 22.4^2$	M2	Allow M1 $\pi \times 22.4^2$
$= 787.7(6) \text{ to } \frac{788.2(6496)}{6}$	A1	A1 1575.5 to 1576.5
`		SC1 for answer 3151 to 3153.05
H6bc	5	

PAPER 1 – HIGHER TIER

Higher Tier November 2011 Paper 1	Mark	Comments (Final Post-conference version 13.11.11)
1.(a) Strategy, e.g. knowing that the probabilities add to 1, or	M1	Also for their $P(Red)$ + their $P(Blue) = 0.5$
that RED with BLUE is 0.5, or Green the same as Red	A 1	Either correct response implies M1 also
RED 0.18	A1	
BLUE 0.32	A1	
(b) 0.12 + 0.18	M1	
0.3(0) or 30% or equivalent	A1	
	5	
2.(a) 90 (kg), 172 (cm)	B2	B1 for either or if reversed
(b) Positive	B1	Do not accept a description
(c) Suitable line, with some points above and below	B1	No requirement to pass through the means
(d) Answers in the range >60 (kg) but ≤ 70 (kg)	B1	OR Suitable answer from their line of best fit
(e) No, with a suitable reason	B1	No maybe implied in their statement
e.g. No as there is no data around 210cm, or	_	
"graph doesn't go that high"	6	
3.(a) $a = 70^{\circ}, b = 110^{\circ}, c = 70^{\circ}$	В3	B1 for each. FT $b = 180 - a$ and $c = a$ or $c = 180 - b$
(b) 360/10	B1	OR alternatively: 8 triangles at 180 or 1440 B1
180 – 360/10	M1	$(8 \times 180) \div 10 \qquad \qquad M1$
144 ⁽⁰⁾	A1	144 A1
(c)(i) Bearing 326 <u>+</u> 2°	B1	
(ii) $038^{\circ} \pm 2^{\circ}$ from C	M1	
$305^{\circ} \pm 2^{\circ}$ from A	M1	
D indicated or implied by point	A1	Depends on at least 1 M mark
	10	
4. (a) Correct reflection in the line $x = -1$	B2	B1 for a reflection in any line indicated or either axis, OR
		B1 for drawing $x = -1$
(b) Correct translation	B1	-
(c) Enlargement ½	M1	Note: Scale factor 2 is NOT MR, M0 A0
Correct position	A1	
(d) Bisector of angle CAB	B1	$\pm 2^{0}$
Arc radius 5cm centre A	B1	<u>+</u> 1 mm
Correct region shaded	B1	FT for intention of bisector & arc
	8	
$5.(a) 60/80 \times 100$	M1	
75(%)	A1	Allow SC1 for 75/100
(b) $300/12 \times 5$ OR $300/12 \times 7$	M1	Intention $300/(5+7)$ then $\times 5$ or $\times 7$
(£)125	A1	CAO
(£) 175	A1	CAO
(c) $75/100 \times 562.80$ OR 34×562.80 OR $281.4(0) + 140.7(0)$	M1	OR equivalent e.g. attempting to find 7 lots of 10% and adding 5%
(£)422.1(0)	A1	
	7	
6.(a) $4n + 2$	B2	B1 for 4n. B0 for $n + 4 = 4n$
(b) $3x + 7x = 8 - 4$	B1	FT until 2 nd error
x = 4/10 (or equivalent)	B1	ISW. Accept $x = -4/-10$
(4	
7.(a) E.g. $^{\circ}2^{3}\times 3$ not even powers',	E1	Accept 'no number times itself gives 24' only with 4×4 and 5×5
7.(a) E.g. 2 13 not even powers ,		given. Accept $4\times4 = 16$ and $5\times5 = 25$. Do not accept '16, 25'
		Do not accept "not even powers" without $2^3 \times 3$
		Accept '2\(6\) not a whole number'
(b) Method that produces at least 2 correct prime factors	M1	Before 2 nd error
Sight of correct factors (2, 2, 2, 2, 7)	A1	Ignore 1s seen
Signt of coffect factors $(2, 2, 2, 2, 7)$ $2^4 \times 7$	B1	FT their factors (with at least on index >1 used). Do not ignore 1s.
(c) 3/5 or 0.6	B1	CAO
(d) $7/3 \times 24/7$	M1	Unsimplified answer award M1 only
= 8	A1	Onshiphiled answer award wit offly
- 0	7	
0 (-) 2045 1 2055		D1 for and Accord 2044 000/0000 \ (2044 0
8.(a) 2045 and 2055 (b) Sight of least width 1035 (mm)	B2	B1 for each. Accept 2044.999(9999) not 2044.9
(b) Sight of least width 1035 (mm)	B1	ET their least leasth mod 2000 AND days at 12 to 120
2045+1035+2045+1035	M1	FT their least length, not 2050 AND their least width, not 1040
6160 (mm)	A1	CAO
	5	

9. (a) $(x-4)(x+2)$		Comments (Final Post-conference version 13.11.11)
	B2	B1 for $(x - 4)(x - 2)$ with no or incorrect signs
(b) $2x^2 - 9x - 5$	B2	B1 for $2x^2$ -5 or -9x as part of a trinomial. ISW 'solving'
(c) $21 - 2x = 20 - 5x$	B1	FT until second error
3x = -1	B1	
x = -1/3 = -0.33 ISW	B1	Do not accept -0.3 unless -1/3 seen.
		FT: $21 - 2x = 20 - x$ B0, $-x = -1$ B1, $x = 1$ B1
		FT: $21 - 2x = 4 - 5x$ B0, $3x = -17$ B1, $x = -17/3$ B1
		125 - 10x = 4 - x is 2 errors so no FT
(d) $24 x^{10} y^7$	B2	B1 for any two factors number, x & y correct, or correct but with
(d) 24 x y	52	"times" left in expression
(e) a^3	B1	CAO
	10	
10.(a) 40, 50, 56, 60	B1	FT to (b) only if cumulative in (a).
(b) At least 5 plots correct horizontally	B1	B0 for bars, B1 for vertical lines. Accept plots, e.g 89 to 90 for <90
At least 5 plots correct vertically	B1	B1 for bars or vertical lines
All 7 points plotted correctly and joined	B1	Joined with a curve or a straight line
(c) (i) Median from their cum. freq. diagram	B1	FT their cumulative frequency or other cumulative diagram in (c)
Difference of heart rate reading for 45 & 15	M1	Allow consistent misread of the scale.
Interquartile range	A1	Correct for their cumulative freq. diagram
	7	
11.(a) $(3x+2)(2x-5)$	B2	B1 for $(3x2)(2x)$
x = -2/3 and $x = 5/2$	B1	FT their pair of brackets
(b) $(2y+9)(2y-9)$	B2	B1 for (2y9)(2y9)
	5	
12.(a) 0.3, 0.2, 0.8, 0.2, 0.8	B2	B1 0.3 with one other correct, or 0.2 & 0.8 as a pair
(b) 0.7×0.2	M1	
= 0.14	A1	FT from their tree, not 0.5s and must be <1
12 () 25 1 1 1 () ()	4	
13.(a) Method for either (i) or (ii)	M1	(Accept missing brackets if no other marks in (a))
(i) 3a +2b	A1	Simplifying $-(2\mathbf{a} + \mathbf{b}) + 5\mathbf{a} + 3\mathbf{b}$ correctly
(ii) 9a + 6b	A1	Simplifying $-(5\mathbf{a} + 3\mathbf{b}) + 14\mathbf{a} + 9\mathbf{b}$ correctly
(b) $\mathbf{KM} = 12\mathbf{a} + 8\mathbf{b}$ seen or implied	M1	FT(i) + (ii)
Showing p = 4	A1 E2	CAO
(c) Collinear (or parallel)and 4 times length, OR Collinear with ratio KL:LM as 1:3, OR equivalent	7	E1 for parallel OR collinear OR 4 times length
14.(a) $x = -3$, 1, 5		Accept 'all on straight line' for collinear
14.(a) $x = -3$, 1, 5 (b) Tangent at $x = 4$	B1 B1	All three required
Gradient = change y / change x	M1	Independent of tangent drawn or not, no values required
11 from a tangent or ft reasonable tangent	A1	independent of unigent drawn of not, no values required
(c) Line $y = 10$ stated or shown	B1	Maybe implied
Solution ~ -2.6, ~0.4, ~5.3	B2	FT from incorrect line
2.0, 0.1, 5.5	52	B1 for 2 solutions, or 3 solutions from consistent MR
(d) Using trapezium rule or evidence of summation of areas.	M1	Must be for required area
At least 2 correct non zero y values.	M1	Equal strips gives (-3,0),(-2,21),(-1,24),(0,15),(1,0)
Correct expression for total area.	A1	Allow 1 error in y value. $10.5+22.5+19.5+7.5$
Answer 60	A1	CAO
	11	An answer of '260' gets M0, M1, A0, A0 but then SC1
15. (a) (<i>x</i> =) 0.6525252 & (100 <i>x</i> =) 65.252525 with attempt	M1	Or equivalent
to find the difference		^
646 / 990	A1	A final answer of 64.6/99 is M1 only
(b) 65√5	B2	B1 for $325=5\times5\times13$ or $\sqrt{325}=5\sqrt{13}$ or partial simplification or
	4	shown by division

PAPER 2 – HIGHER TIER

Higher Tier November 2011 Paper 2	Mark	Comments Final 28/11/11
1.(a)(i) Their readings at 14:30 & 13:00 and intention to	M1	116 – 64. Allow for 'their readings' with intention to subtract
subtract = 52 (lm)	A 1	CAO
= 52 (km) (ii) $52/1.5$	A1 M1	CAO FT their (i)
34.666(km/h)	A1	Accept rounded or truncated. <i>However, do not accept an answer of</i>
54.000(MH / H)	711	35 without working or from incorrect working
		SC1 for an answer of 40
(b) Explanation, e.g. "first half journey in just over an hour",	E1	Accept, e.g. "more vertical", "line increases means it is quicker"
"steeper to start"	5	
2.(a) -5, -2, 3	B2	B1 for any two terms in correct position. Award B1 for -6, -5, -2
(b) $x(x-5)$	B1	CAO
(c) 120(2y -3)	B2	B1 for correct partially factorised, or 120(2y) or 120(3) B0 for 240(y – 1.5)
(d) $12x - 44 = 40$ OR $3x-11 = 40/4$	B1	FT until 2 nd error in (d)
12x = 40+44 OR 3x = 10 + 11	B1	1 1 divid 2 direct in (d)
x = 84/12 (ISW) OR $x = 21/3$ (ISW) OR $x = 7$	B1	Accept embedded answer
(e) 9	B1	CAO
	9	
3.(a) 0.72	B2	B1 for 0.7(17694)
(b) $18/100 \times 45 = 8.1(0)$	M1	Al
45 + their tax (£)53.1(0)	m1 A1	Alternatively allow M2 for 1.18 × 45 CAO
(c) Any correct 8% of a value used in workings	B1	CAO
1600 – 8% of 1600 (= 1600 – 128)	M1	OR M2 for 1600×0.92^2 (M1 for 1600×0.92)
1472 – 8% of 1472 (= 1472 – 117.76)	m1	FT their 128
(£) 1354.24	A1	CAO. Penalise extra working -1
· /	9	Appreciate: Possible B1 and SC1 for (£)1866.24
		Simple depreciate: Possible B1 and M1 (1344)
4. 700× 1.64	M1	
= (\$)1148 (Canadian dollars)	A1	
Conclusion, has to buy 1100 (Canadian dollars)	A1	FT their rounding down to nearest 50 provided M1
1100 ÷1.64	M1	FT their amount of Canadian dollars but not 'their 1148', for M
= 670.73(17)	A1 A1	and 1 st A only, however FT multiples of 50 for all marks £ must be given. Accept £670.73p
£670.73	AI	Accept an answer of '£29.27 in credit' or similar, but an answer of
		29.27 would not get the final A mark, but would do award the
	6	previous M1 A1 as alternative method
5.(a) Mid points 4, 12 and 20	B1	Two shown is sufficient if no error
$(15 \times 4 + 67 \times 12 + 18 \times 20) \qquad (OR 60 + 804 + 360 = 1224)$	M1	Attempt \sum fx for their mid-points that fall within the intervals
		including bounds
100	m1	Attempt their∑ fx divided by 100
= 12.2(4) (b)Polygon with at least 3 vertices correctly plotted (vertical &	A1 M1	CAO. Accept 12 only if all working shown No polygon M0. Ignore bars.
horizontal)	IVII	Mid points - allow intention (e.g. from 10 to 12 inclusion)
All 5 vertices of the polygon correct	A1	SCI for a correct polygon translated horizontally or all correct
	6	plots with no polygon (or curved polygon!). Ignore joining to axis
	<u></u>	or to form a complete shape
6.(a) $2 \times \pi \times 7.2$	M1	
= 45.2(16) to 45.3 (cm)	A1	
Degree of accuracy, whole or 1 d.p.	A1	FT rounding to whole or 1d.p. provided M1 A1 awarded
(b) $\frac{1}{2}\pi \times 22.4^2$	M2	Allow M1 $\pi \times 22.4^2$
$= 787.7(6)$ to $788.2(cm^2)$	A1	A1 FT 1575.5 to 1576.3
(c) $\frac{1}{2}(8.2 + 12.8) \times 7.6$	M1	SC1 for answer 3151 to 3152.65
$79.8 \text{ (cm}^2\text{)}$	A1	Accept 80 from working
() ((iii)	8	<u>-</u>
7. (a) $18k - 6q = dk + 7$	B1	Expand FT each stage for equivalent level of difficulty
18k - dk = 6q + 7	B1	Collect until 2 nd error
k(18-d) = 6q + 7	B1	Factorise
$k = \frac{(6q+7)}{(18-d)}$	B1	Divide
(b)(i) 7.6×10^7	B1	CAO
(ii) 8×10^8	B1	CAO Penalise incorrect notation once only
	6	

Higher Tier November 2011 Paper 2	Mark	Comments Final 28/	11/11
8. (a) One correct evaluation,	B1		
$3 \le x \le 4$		$x 2x^3 + x - 100$	
		3 -43	
2 correct evaluations,	B1	3.1 -37.318	
$3.55 \le x \le 3.7$, one either side of 0		3.2 -31.264	
		3.3 -24.826	
2 correct evaluations,	M1	3.4 -17.992	
$3.55 \le x \le 3.65$, one either side of 0		3.5 -10.75	
OR correct evaluation of 3.65 if previous B1 awarded		3.55 -6.97225	
r		3.6 -3.088	
3.6	A1	3.65 0.90425	
No calculations shown: accept "too high", ">", etc.		3.7 5.006	
The content of the co		3.8 13.544	
		3.9 22.538	
		4 32	
(b) Correctly setting up 2 equations for eliminating 1 variable	M1	Or alternate substitution method, allow one si	lip in multiplication in
		non-eliminate	. r
First variable's value	A1	Either $x = 2$ or $y = -6$	
Correctly substituting their first variable	M1	FT their first variable	
Second variable's value	A1	FT their first variable	
Second variable 8 value	8	1 1 then that variable	
9.(a) $5.4/3 \times 2.5$	M1	Or equivalent calculation that could lead to co	orrect answer
		Or equivalent calculation that could lead to co	onect answer
=4.5 (cm)	A1	On agriculant calculation that are 14.1	ome at an arri
(b) 3.6 / 5.4/3	M1	Or equivalent calculation that could lead to co	orrect answer
= 2 (cm)	A1	If no marks in (a) or (b) then award	
	4	SC1 for sight of scale factor 1.8	
$10.(a) (AD^2 =) 12.3^2 - 6.2^2$	M1		
$(AD^2 =) 112.85$	A1		
AD = 10.6(23 cm)	A1		
(b) Strategy, idea to find BC and CD	S1	Or idea to find DC and use ½ cbsinD	
$\sin 41 = BC/12.3$ OR $\cos 41 = CD/12.3$	M1		
$BC = 12.3 \times \sin 41$ OR $CD = \cos 41 \times 12.3$	M1	Implies previous M1	
BC = 8.0695 OR $CD = 9.28$	A1		OR
Use of correct method to find the other side	M1	Correct Pythagoras substitution, or trig	M2 ½ absinD
Other side correct CD or BC	A1	Allow FT from rounding errors	correctly substituted
Area BCD = $\frac{1}{2}$ BC×CD	M1	FT their CD and BC provided at least S1	(M1 if 1 slip, not the
Answers between 37.4 and 37.7 (cm ²)	A1	FT	wrong angle)
	11		A2 Correct answer
11. (a) 30 (seconds)	B1		
(b) Histogram drawn with at least 4 frequency densities correct	M1	Frequency density 1, 1.6, 2.4, 4.2 and 0.4	
Correct histogram drawn	A1	110quency denoity 1, 1.0, 2.7, 7.2 and 0.7	
Contoot motogram drawn	3		
12.(a) $y \alpha x^2 OR y = kx^2$	B1		
$4 = k0.5^{2}$	M1	FT non linear only	
$v = 16x^2$	A1	Maybe implied in part (b)	
y = 10x (b)	AI	iviay of implied in part (0)	
	B2	B1 for each value. FT their non linear expres	sion
	5	bi for each value. Fi their non intear expres	51011
j : 1 5.55		2416	2.
13.(a) $2(x+5)(x+4) + 2(x+4) \times 6 + 2(x+5) \times 6$	M2	M1 for area of any 2 of the 6 faces, or 1 of th	e 3 terms.
$2x^2 + 42x - 57 = 0$	A1	Must follow from working, convincing	
(b) $\{-42 \pm \sqrt{(42^2 - 4 \times 2 \times -57)}\}/4$	M1	Allow 1 slip. Incorrect formula is M0	
$(-42 \pm \sqrt{2220})/4$	A1		
1.28 and -22.28	A1		
(c) (6,) 5.28, 6.28	B1	FT $x + 4$ and $x + 5$. (Accept 5.3 and 6.3). Allo	ow FT from +ve only.
	7	B0 if +ve and -ve given	
14.(a) Mean 54.7	B1		
$\Sigma x^2 = 34257 \text{ or } \Sigma (x - \overline{x})^2 = 4336.1$	M1		
	A1		
SD = 20.8(233)	B1	FT mean + 2	
(b) New mean 56.7	B1	FT 'their SD' unchanged	
SD = 20.8(233)	E1	Depends on B2 in (b). Understanding, not cal	culated. If no
Explanation e.g. 'spread unchanged'	6	calculations accept simple statement 'all mar	
			.

Higher Tier November 2011 Paper 2	Mark	Comments Final 28/11/11
15.Overall strategy, cosine rule followed by sine rule	S1	
$AC^2 = 52^2 + 37^2 - 2 \times 52 \times 37 \times \cos 19$	M1	
$AC^2 = 434.644$	A1	
AC = 20.8(481)	A1	Accept 21.
$\underline{\sin B} = \underline{\sin 47}$	M1	FT candidate's AC
AC 28		
$\sin B = \sin 47 \times AC/28$	M1	Implies previous M1
32.9(9°) to 33(.26°)	A1	
	7	

GCSE Mathematics - 2 Tier Legacy MS/November 2011

WJEC 245 Western Avenue Cardiff CF5 2YX Tel No 029 2026 5000 Fax 029 2057 5994

E-mail: exams@wjec.co.uk website: www.wjec.co.uk