
Surname			Other	Names			
Centre Number			Candidate Number				
Candidate Signature							

General Certificate of Secondary Education June 2005

MATHEMATICS (MODULAR) (SPECIFICATION B) Module 5 Higher Tier Paper 2 Calculator

33005/H2

H

Wednesday 15 June 2005 9.00 am to 10.15 am

In addition to this paper you will require:

- · a calculator
- · mathematical instruments.

Time allowed: 1 hour 15 minutes

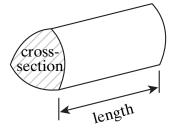
Instructions

- Use blue or black ink or ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- Do all rough work in this booklet.
- If your calculator does not have a π button, take the value of π to be 3.14 unless otherwise instructed in the question.

Information

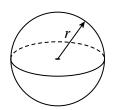
- The maximum mark for this paper is 70.
- Mark allocations are shown in brackets.
- Additional answer paper, graph paper and tracing paper will be issued on request and must be tagged securely to this answer booklet.
- You are expected to use a calculator where appropriate.

Advice

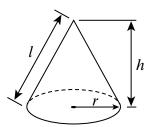

• In all calculations, show clearly how you work out your answer.

For Examiner's Use		
Pages		Mark
3		
4 – 5		
6 – 7		
8 – 9		
10 – 11		
12 – 13		
14 – 15		
16		
TOTAL		
Examiner's Initials		

Formulae Sheet: Higher Tier


You may need to use the following formulae:

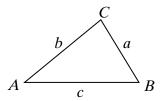
Volume of prism = area of cross-section \times length


Volume of sphere =
$$\frac{4}{3} \pi r^3$$

Surface area of sphere = $4 \pi r^2$

Volume of cone =
$$\frac{1}{3} \pi r^2 h$$

Curved surface area of cone = $\pi r l$

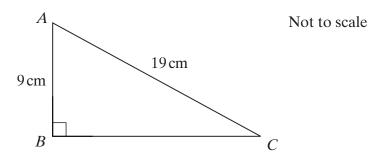


In any triangle ABC

Area of triangle =
$$\frac{1}{2} ab \sin C$$

Sine rule
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

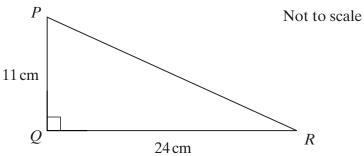
Cosine rule $a^2 = b^2 + c^2 - 2bc \cos A$


The Quadratic Equation

The solutions of $ax^2 + bx + c = 0$, where $a \ne 0$, are given by

$$x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$$

Answer all questions in the spaces provided.

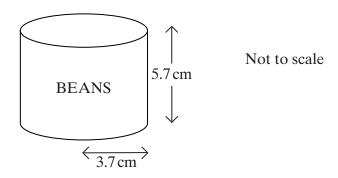

(a) *ABC* is a right-angled triangle. $AC = 19 \,\mathrm{cm}$ and $AB = 9 \,\mathrm{cm}$.

Calculate the length of *BC*.

 	 •••••	•••••	••••••
 	 	•••••	•••••
Answer	 	cm	(3 marks)

(b) *PQR* is a right-angled triangle. PQ = 11 cm and QR = 24 cm.

24 cm
Calculate the size of angle PRQ .


Answer degrees

(3 marks) **Turn over**

2	Solve the equation $5x - 1 = 3(x + 2)$
	Answer $x = \dots (3 \text{ marks})$
3	A solution of the equation $x^3 - 8x = 110$ lies between $x = 5$ and $x = 6$.
	Use trial and improvement to find this solution. Give your answer to one decimal place.
	Answer $x = \dots (3 \text{ marks})$

4 The diagram shows a cylindrical can of beans. The height is 5.7 cm.
The radius of the base is 3.7 cm.

Calculate the total surface area of the can.
Answer

TURN OVER FOR THE NEXT QUESTION

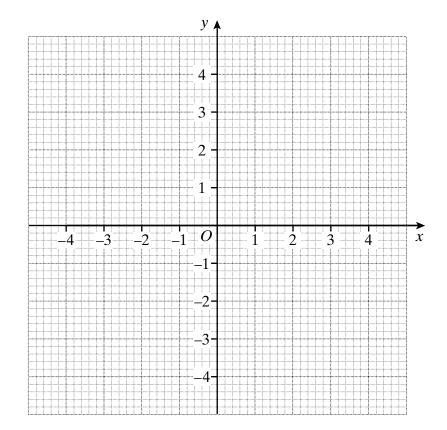
(a)	Expand and simplify $4(2x-1) + 3(x+6)$	
	Answer	(2 mark
(b)	Expand $x^2(4-2x)$	
	Answer	(2 mark
(c)	Expand and simplify $(x+1)(x-3)$	
	Answer	(2 mark
(d)	Simplify $2x^3y^5 \times 4x^4y$	
	Answer	(2 mark

6

SUPERGROW GARDEN CENTRE

ROSES $\pounds x$ each

SHRUBS £y each

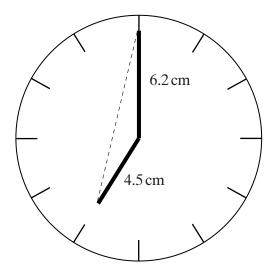

(a)	Megan buys 4 roses and 3 shrubs. She pays £33.
	Use this information to write down an equation in x and y .
	(1 mark)
(b)	Josh buys 6 roses and 6 shrubs. He pays £57.
	Use this information to write down another equation in x and y .
	(1 mark)
(c)	Solve your equations simultaneously to find the values of <i>x</i> and <i>y</i> . You must show your working. Do not use trial and improvement.

Turn over

7	(a)	Which of these sta	atements are cor	rect?		
		P	all isosceles tr	riangles are similar		
		Q	all squares are	e similar		
		R	all parallelogr	cams are similar		
		S	all regular per	ntagons are similar		
			Answer			(2 marks)
	(b)	These two rectang	gles are similar.			
			27 cm		x	Not to scale
					N.	
		42 cm		56 cm		
		Calculate the valu	te of x .			
					•••••	
			Answer		c	em (3 marks)

8 (a) On the grid below, draw the graph of $x^2 + y^2 = 9$

(1 mark)


(b) Write down the equation of the tangent to the curve at the point (0,3).

Answer (1 mark)

TURN OVER FOR THE NEXT QUESTION

9 The hour hand of a clock is 4.5 cm long. The minute hand is 6.2 cm long.

Not drawn accurately

Calculate the distance between the tips of the hands at 7 o'clock.			
	•••••		
	•••••		••••
	•••••		
		•••••	••••
Answer	cm	ı (4 mari	ks)

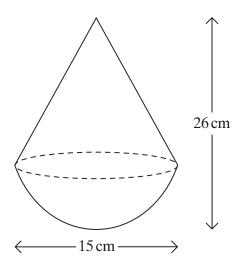
(a) This is a page from Zoe's exercise book.

$$2^{3} - 1^{3} = 7 \text{ (prime)}$$

 $3^{3} - 2^{3} = 19 \text{ (prime)}$
 $4^{3} - 3^{3} = 37 \text{ (prime)}$

$$3^3 - 2^3 = 19$$
 (prime)

$$4^3 - 3^3 = 37$$
 (prime)


The difference between consecutive cube numbers is always a prime number.

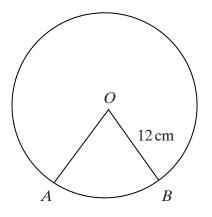
	Give a counter example to show that Zoe is wrong. Justify your answer.
	(2 marks)
(b)	Prove that $(n+5)^2 - (n+3)^2 = 4(n+4)$
	(3 marks)

11 A child's toy is in the shape of a cone on top of a hemisphere.

The diameter of the hemisphere is 15 cm and the overall height of the toy is 26 cm.

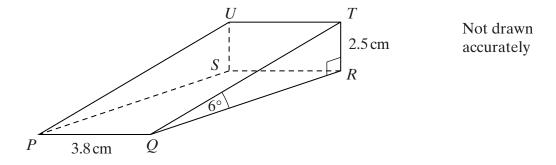
Not to scale

Calculate the volume of this toy.
Answer cm ³ (5 marks)


The perimeter of a rectangle is 25 cm. The length of the rectangle is x cm. Not to scale $x \, cm$ (a) Write down an expression for the width of the rectangle in terms of x. (1 *mark*) The area of the rectangle is $38 \, \text{cm}^2$. $2x^2 - 25x + 76 = 0$ Show that (2 marks) (c) Solve the equation given in part (b) to find the value of x. Give your answer to 2 decimal places. (3 marks)

Answer

Turn over


13 AOB is a sector of a circle of radius 12 cm. The area of the minor sector AOB is 98 cm^2 .

Not drawn accurately

Calculate the size of angle <i>AOB</i> .	
Answer	 degrees (3 marks)

14 The diagram shows a door-wedge with a rectangular horizontal base PQRS. The sloping face PQTU is also rectangular. PQ = 3.8 cm and angle $TQR = 6^{\circ}$ The height TR is 2.5 cm.

Calculate the length of the diagonal PT .		
Answer cm (5 marks)		

TURN OVER FOR THE NEXT QUESTION

8

15	Solve the equation $\frac{2}{y+1} + \frac{3}{2y-1}$	$\frac{1}{3} = 1$
	Answer	(5 marks)

END OF QUESTIONS