Version 1.1

Surname			Other	Names			
Centre Number				Candida	ate Number		
Candidate Signatu	ıre						

General Certificate of Secondary Education June 2003

MATHEMATICS (MODULAR) (SPECIFICATION B) 33005/H1 Module 5 Higher Tier Paper 1 Non-Calculator

Wednesday 4 June 2003 1.30 pm to 2.45 pm

In addition to this paper you will require: mathematical instruments.

You must **not** use a calculator.

Time allowed: 1 hour 15 minutes

Instructions

- Use blue or black ink or ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- Do all rough work in this booklet.

Information

- The maximum mark for this paper is 70.
- Mark allocations are shown in brackets.
- Additional answer paper, graph paper and tracing paper will be issued on request and must be tagged securely to this answer booklet.

•	-		
^		W7	00

• In all calculations, show clearly how you work out your answer.

For Examiner's Use					
Pages	Mark				
3					
4 – 5					
6 – 7					
8 – 9					
10 – 11					
12 – 13					
14 – 15					
TOTAL					
Examiner's Initials					

Copyright © 2003 AQA and its licensors. All rights reserved.

Formulae Sheet: Higher Tier

You may need to use the following formulae:

Volume of prism = area of cross section \times length

Volume of sphere =
$$\frac{4}{3} \pi r^3$$

Surface area of sphere = $4 \pi r^2$

Volume of cone =
$$\frac{1}{3} \pi r^2 h$$

Curved surface area of cone = $\pi r l$

In any triangle ABC

Area of triangle = $\frac{1}{2}ab \sin C$

Sine rule
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine rule $a^2 = b^2 + c^2 - 2bc \cos A$

The Quadratic Equation

The solutions of $ax^2 + bx + c = 0$, where $a \ne 0$, are given by

$$x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$$

Answer all questions in the spaces provided.

1	The diagram shows part of a regular polygon.	
	Each interior angle is 162°.	
		Not drawn accurately
	Calculate the number of sides of the polygon.	
	Answer	(3 marks)
2	Tom builds fencing from pieces of wood as shown b	pelow.
	Diagram 1 Diagram 2	Diagram 3
4	pieces of wood 7 pieces of wood	10 pieces of wood
	How many pieces of wood will be in Diagram n ?	
	Δ newer	(2 marks)

3 (a) Complete the table of values for $y = x^2 - 4x - 1$.

х	-1	0	1	2	3	4	5
y		-1	-4		-4	-1	4

(2 marks)

(b) On the grid, draw the graph of $y = x^2 - 4x - 1$ for values of x from -1 to +5.

(2 marks)

(c) Use your graph to solve the equation $x^2 - 4x - 1 = 0$.

4	Simp	olify		
	(a)	$m^2 \times m^5$		
	(b)	$p^6 \div p^3$	Answer	(1 mark)
	(c)	$(q^4)^2$	Answer	(1 mark)
			Answer	(1 mark)
5	Expa	and and simplify		
	(a)	5(2x+1) - 3(x	-4)	
	(b)	(y-4)(y-2)	Answer	(2 marks)
			Answer	(2 marks)
	(c)	(2t+5)(2t-5)		
			Answer	(2 marks)

6 The diagram shows two triangles, C and D.

(a)	Describe fully the single transformation which maps triangle C to triang	D.
		(2 marks)

(b) Triangle C is translated by the vector $\begin{pmatrix} -4 \\ -3 \end{pmatrix}$ and then rotated 90° anti-clockwise about the point (0,-2).

Draw the final position of triangle C after these transformations.

(4 marks)

7 The diagram shows a triangle, ABC.

(a) Using a ruler and compasses only, construct the perpendicular bisector of AB. You **must** show clearly all your construction arcs.

(2 marks)

- (b) (i) Repeat this construction on another side of the triangle. (1 mark)
 - (ii) The point of intersection of the two bisectors is the centre of the circle which passes through A, B and C.

Draw this circle. (2 marks)

8 (a) In the diagram, O is the centre of the circle.

Not drawn accurately

Answer	degrees	(2 marks)
		••••••
Calculate the value of <i>a</i> .		

(b) In the diagram below, O is the centre of the circle and angle $PSR = 100^{\circ}$.

Calculate the value of *b*.

Not drawn accurately

(c) CD is a tangent to the circle at C.

Not drawn accurately

Calculate the value of c.

	Give reasons for your answer.	
		••••••
	Answer degrees	(3 marks)
(a)	Make x the subject of $x^2 + k = 16$	

	Answer $x = \dots$	(2 marks)
(b)	Make P the subject of $A = P + \frac{PRT}{100}$	

.....

Answer $P = \dots (3 \text{ marks})$

Turn over \blacktriangleright $\left(\frac{3 \text{ marks}}{12}\right)$

10 (a) Factorise $2x^2 - 7x - 15$

.....

.....

(b) The graph of $y = 2x^2 - 7x - 15$ is sketched below.

Find the equation of the line of symmetry of this graph.

11 The diagram shows two sets of parallel lines.

Vector $\overrightarrow{PQ} = \mathbf{a}$ and vector $\overrightarrow{PS} = \mathbf{b}$

 $\overrightarrow{PR} = 3\overrightarrow{PQ}$ and $\overrightarrow{PU} = 2\overrightarrow{PS}$

(a) Write the vector \overrightarrow{PV} in terms of **a** and **b**

 •••••

Not to scale

(b) Write the vector \overrightarrow{RU} in terms of **a** and **b**

(c) Find **two** vectors that can be written as $3\mathbf{a} - \mathbf{b}$

.....

12 Solve the simultaneous equations.

$$y = x + 7$$

$$x^2 + y^2 = 25$$

You **must** show your working.

Do not use trial and improvement.
Answer

13 (a) Sketch the graph of $y = \sin x$ for values of x from 0° to 360° .

13

(1 mark)

1	h)	One solution	of the	equation	$\sin x - 0.92$	ic	v – 67°
(U,) One solution	or the	equation	$\sin x = 0.92$	18	x = 0

Use your sketch graph to find another solution of this equation.

(c) L	Jse your	sketch	graph	to work	out the	value	of sin	293°
-------	----------	--------	-------	---------	---------	-------	--------	------

.....

Answer (1 mark)

TURN OVER FOR THE NEXT QUESTION

14 OQP is a sector of a circle of radius 15 cm.

The angle of the sector is 120° .

(a)	Show that the length of the arc PQ is 10π cm.				
	(2 marks				

The sector is folded to form a cone.

	Answer	cm	(2 marks)				
		•••••	•••••				
		••••••	•••••				
b)	Calculate the radius of the base of the cone.						

15 (a) The graph $y = x^2$ is transformed as shown.

Write down the equation of the transformed graph.

Answer
$$y = \dots (1 \text{ mark})$$

(b) The graph of y = 3x - 2 is sketched below.

On the same axes, sketch the graph of y = 2 - 3x

(2 marks)

END OF QUESTIONS