GCSE MATHEMATICS 8300/2H Higher Tier Paper 2 Calculator Mark scheme June 2023 Version: 1.0 Final Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner. It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper. Further copies of this mark scheme are available from aga.org.uk #### Copyright information AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre. Copyright © 2023 AQA and its licensors. All rights reserved. #### **Glossary for Mark Schemes** GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories. If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt. | M | Method marks are awarded for a correct method which could lead to a correct answer. | |-----------------|--| | A | Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied. | | В | Marks awarded independent of method. | | ft | Follow through marks. Marks awarded for correct working following a mistake in an earlier step. | | sc | Special case. Marks awarded for a common misinterpretation which has some mathematical worth. | | M dep | A method mark dependent on a previous method mark being awarded. | | B dep | A mark that can only be awarded if a previous independent mark has been awarded. | | oe | Or equivalent. Accept answers that are equivalent. | | | eg accept 0.5 as well as $\frac{1}{2}$ | | [a, b] | Accept values between a and b inclusive. | | [a, b) | Accept values a | | 3.14 | Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416 | | Use of brackets | It is not necessary to see the bracketed work to award the marks. | Examiners should consistently apply the following principles. #### **Diagrams** Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised. #### Responses which appear to come from incorrect methods Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised. #### Questions which ask students to show working Instructions on marking will be given but usually marks are not awarded to students who show no working. #### Questions which do not ask students to show working As a general principle, a correct response is awarded full marks. #### Misread or miscopy Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded. #### **Further work** Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer. #### Choice When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost. #### Work not replaced Erased or crossed out work that is still legible should be marked. #### Work replaced Erased or crossed out work that has been replaced is not awarded marks. #### Premature approximation Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise. #### Continental notation Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point. | Q | Answer | Mark | Comments | | | | |----------|--|------|---|--|--|--| | | $\frac{30}{12}$ or 2.5 | B1 | oe fraction, mixed number or decimal eg $\frac{5}{2}$ or $2\frac{1}{2}$ | | | | | 1 | Additional Guidance | | | | | | | ' | Ignore simplification or conversion at | | | | | | | | eg $\frac{30}{12}$ in working with 2.6 on answer | B1 | | | | | | | 30 ÷ 12 with no further correct work | В0 | | | | | | Q | Answer | Mark | Comments | | | |---|--------|--------------|----------|--|--| | | 28 | B1 | | | | | 2 | | Additional G | Guidance | | | | | | | | | | | Q | Answer | Mark | Comments | | | |---|---|------------|--|--------------|--| | | $\frac{7}{4}$ or 1.75 | B1 | oe fraction, mixed number eg 1 $\frac{3}{4}$ | r or decimal | | | | Ado | ditional G | Guidance | | | | | Ignore conversion attempt after corre | ct answer | seen | | | | | eg $\frac{7}{4} = 1.8$ | B1 | | | | | 3 | Condone answer $\frac{1}{\frac{4}{7}}$ | B1 | | | | | | Condone answer $\left(\frac{4}{7}\right)^{-1}$ (without b | B1 | | | | | | Do not allow $1 \div \frac{4}{7}$ | | В0 | | | | | $\frac{-7}{-4}$ | | | B1 | | | Q | Answer | Mark | Comments | | | |---|---|------------|--|----|--| | | 112.5% or 1.125 or $\frac{9}{8}$ or 19.53 ÷ 112.5 (× 100) or 0.1736 (× 100) | M1 | oe eg 1 + 0.125
or
19.53 ÷ 9 × 8 or 2.17 × 8 | | | | | 17.36 | A1 | | | | | | Ado | ditional G | Guidance | | | | 4 | M1 may be awarded for correct work even if this is seen amongst multiple | | nswer or incorrect answer, | | | | | M1 may be seen in a trial (the answe eg 15 × 1.125 | M1 | | | | | | 19.53 × 1.125 | | | M1 | | | | Do not allow misreads for 12.5% | | | | | | | eg1 19.53 ÷ 1.0125 | | | | | | | eg2 19.53 ÷ 112 | | | | | | | 112.5 not recovered | | | MO | | | Q | Ans | wer | | Mark | | Comments | | | |---|---|--------|-------|-------|---|----------|------|--| | | 45 × 8 or 360 | | | M1 | oe number of 2p coins may be embedded | | | | | | 45 × 8 × 2
or 360 × 2
or 720 or 7.2(0) | | | M1dep | oe value of 2p coins implied by 1170 or 11.7(0) | | | | | | 17.7(0) – their 7.2
or
1770 – their 720 –
or
6(.00) or 600 | | | M1dep | oe
value of 5p coins | | | | | | 6:5 | | | A1 | accept 1.2:1 or $\frac{6}{5}$:1 or $1\frac{1}{5}$:1 or 1:0.83() or 1: $\frac{5}{6}$ | | | | | 5 | Additional Guidance | | | | | | | | | | Up to M3 may be awarded for correct work with no answer or incorrect answer, even if this is seen amongst multiple attempts | | | | | | | | | | Allow working in pence or pounds throughout | | | | | | | | | | Must work consistently in pence or pounds for the third mark (or recover) | | | | | | | | | | Ignore units in the ratio eg 6p : 5p or £1.20 : £1 | | | | | | M3A1 | | | | 720 may be seen in a ratio with the value of the 10p coins eg 720 : 450 or 7.2 : 4.5 | | | | | | M2 | | | | 600 may be seen in a ratio with the value of the 10p coins eg 600 : 450 or 6 : 4.5 | | | | | | M3 | | | | For information: | Coin | 10p | 2p | 5p | | | | | | | Number | 45 | 360 | 120 | | | | | | | Value | £4.50 | £7.20 | £6.00 | | | | | Q | Answer | Mark | Comments | | | | | |------|--|------|---|--|--|--|--| | | 360 ÷ 8
or
135 seen | M1 | oe eg $45 \times 8 = 360$
or $180 - \frac{(8-2) \times 180}{8}$
may be on diagram | | | | | | 6(a) | 45 | A1 | | | | | | | | Additional Guidance | | | | | | | | | M1 may be awarded for correct work even if this is seen amongst multiple | | | | | | | | | 45 seen but not chosen as answer, e | M1A0 | | | | | | | Q | Answer | Mark | Comments | |------|--|------|----------| |
6(b) | It is less than the answer to part (a) | B1 | | | Q | Answer | | | | /lark | | | Commen | ts | | |------|---------------------|---|---|---|-------|----|------------|-----------|----|----| | | All values correct | | | | B2 | В1 | 1 or 2 row | s correct | | | | | Additional Guidance | | | | | | | | | | | 7(-) | | 1 | 2 | 3 | | 4 | 5 | 6 | | | | 7(a) | 2 x | 2 | 4 | 6 | | 8 | 10 | 12 | | B2 | | | 3 x | 3 | 6 | 9 | | 12 | 15 | 18 | | DZ | | | x^2 | 1 | 4 | 9 | , | 16 | 25 | 36 | | | | Q | Answer | Mark | Comments | | | |------|--|------------|---|---|--| | | $\frac{8}{18}$ or $\frac{4}{9}$ or 0.44(4) or 44(.4)% | B1ft | oe fraction, decimal or perce ft their table with ≥ 12 values must be using 18 for the tota possible scores | 8 | | | | Ad | ditional G | Guidance | | | | 7(b) | Ignore simplification or conversion attempt (not ratio) after correct probability seen | | | | | | | Ratio answer eg 8 : 18, even alongside a correct probability is B0 | | | | | | | ft decimals or percentages must be correct to the same accuracy as in the scheme | | | | | | | eg 10 winning values in their table | | | | | | | $\frac{10}{18}$ or 0.55(5) or 0.56 or 0.556 or 55(.5)% or 56% or 55.6% | | | | | | Q | Answer | Mark | Comments | | | |------|---|------------|--|--------|--| | | $711 \times \text{their } \frac{8}{18}$ | M1
A1 | oe ft their probability from (b) or if no probability in (b), ft their with ≥ 12 values where 0 < their probability < 1 probabilities, if rounded in (c), mutruncated or rounded to at least 2 SC2 395 | ust be | | | | Ado | ditional G | Guidance | | | | | Answer 316 | | | | | | | $\frac{316}{711}$ on answer line | | | | | | _,, | Condone 316 out of 711 | | | | | | 7(c) | Do not treat estimating by rounding as a misread eg1 700 used instead of 711 eg2 (b) 0.44 (c) 0.4 × 711 (rounded to 1sf in (c) for the probability) eg3 (b) 0.4 (c) 0.4 × 711 (follows through their (b)) | | | | | | | Do not allow ft for a ratio from (b) but may ft their (a) instead | | | | | | | For 0.44 × 711, accept 44% × 711 but do not accept 44% of 711 unless recovered | | | | | | | The method mark may be implied by the nearest integer or rounded up to eg1 (b) $\frac{7}{18}$ | • | | | | | | (c) 276.5 or 276 or 277 (correct ft method implied using (b)) | | | | | | | eg2 (a) completed table has 7 winning values (b) no probability shown (c) 276.5 or 276 or 277 (correct ft method implied using (a)) | | | | | | Q | Answer | Mark | Comments | | | | |---|---|------|-------------------------------------|----------------|--|--| | | a = 8 and $b = 6$ | | B1 $a-3=5$ or $a=3+$ | - 5 or $a = 8$ | | | | | | B2 | or | | | | | | | DΖ | $2b = 12 \text{ or } b = 12 \div 2$ | or $b=6$ | | | | | | | SC1 $a = 6$ and $b = 8$ | | | | | 8 | Additional Guidance | | | | | | | | Ignore working if B2 or B1 or SC1 sec | | | | | | | | $(a-3)x^2 = 5x^2$ with no further correct | В0 | | | | | | | For B1 do not allow embedded value | В0 | | | | | | Q | Answer | Mark | Comments | | |---|---|-------------|--|------------| | | Identifies (6, 3) or (7, 9) or (-4, 3) or (-3, 9) | M1 | may be seen on the grid
mark intention on diagram
eg parallelogram drawn with
vertices at (6, 3) or (6, 3) plo | | | | Identifies (6, 3) and (7, 9) or identifies (-4, 3) and (-3, 9) | M1dep | may be seen on the grid
mark intention on diagram
eg parallelogram drawn with
vertices at (6, 3) and (7, 9)
or (6, 3) and (7, 9) plotted | two of the | | 9 | Both diagonals drawn for one of the correct parallelograms or centre of one of the correct parallelograms identified or (4, 6) or (-1, 6) | M1dep | mark intention on diagram M3 may be implied eg $\left(\frac{1+7}{2}, \frac{9+3}{2}\right)$ or $\left(\frac{-4+2}{2}, \frac{9+3}{2}\right)$ | | | | (4, 6) and (-1, 6) | A1 | | | | | Ade | ditional G | uidance | | | | Up to M3 may be awarded for correct answer, even if this is seen amongst | | | | | | Both answers correct (ignore working | g) | | M3A1 | | | One answer correct (ignore working) | | | М3А0 | | | For first 2 marks condone correct points plotted even if labelled incorrectly | | | | | | Up to M2 can be awarded for coordinates given as answers | | | | | | Arc centre A radius 5 cm passing thro sufficient to award M1 etc | ough (6, 3) | and/or (–4 , 3) is not | | | Q | Answer | Mark | Comments | | | |----|--|----------------|--|-----|--| | | (4)
(-3) | B2 | B1 $\begin{pmatrix} 4 \\ \end{pmatrix}$ or $\begin{pmatrix} \\ -3 \end{pmatrix}$ SC1 $\begin{pmatrix} -4 \\ 3 \end{pmatrix}$ | | | | | Ad | ditional C | Buidance | | | | | $(4, -3)$ or $\begin{pmatrix} -3\\4 \end{pmatrix}$ | | | В0 | | | | Ignore words if a vector is also seen | | | | | | | eg1 Reflection $\begin{pmatrix} 4 \\ -3 \end{pmatrix}$ | | | B2 | | | 10 | eg2 4 right 3 up and $\binom{4}{3}$ | | | B1 | | | | eg3 4 right 3 down | | | В0 | | | | eg4 Rotate 4 left and 3 up and $\begin{pmatrix} -4\\ 3 \end{pmatrix}$ | | | SC1 | | | | Condone any type of brackets | | | | | | | Condone missing brackets for B2 or B1 or SC1 but must have two number in a column | | | | | | | Condone 'fraction line' for B2 or B1 o column | | | | | | | $\begin{pmatrix} 4x \\ -3y \end{pmatrix} \text{ or } \begin{pmatrix} x4 \\ -y3 \end{pmatrix} \text{ or } \begin{pmatrix} x+4 \\ y-3 \end{pmatrix} \text{ or } \begin{pmatrix} 3x+4 \\ y-3 \end{pmatrix}$ | 4 right 3 down | or $\begin{pmatrix} 4 \text{ r} \\ 3 \text{ d} \end{pmatrix}$ or $\begin{pmatrix} 4 \rightarrow \\ 3 \downarrow \end{pmatrix}$ | В0 | | | Q | Answer | Mark | Comments | | | |----|--|------------|---|--|--| | | Alternative method 1 Compares 7 | 0% of volu | ume of hemisphere with volume of water | | | | | $\frac{4}{3} \times \pi \times 12^3$ or 2304π | | oe eg $\frac{4}{3}\pi \times 1728$ | | | | | or [7216, 7239.2]
or | M1 | allow without any multiplication signs $eg \frac{4}{3}\pi 12^3$ | | | | | $\frac{2}{3} \times \pi \times 12^3$ or 1152π | | 3 | | | | | or [3581, 3638] | | | | | | | 0.7 × their 1152π or 806.4π | | 0e | | | | | or [2506, 2547] | M1dep | 0.7 × their [3581, 3638] or $\frac{4032}{5}\pi$ | | | | | | | must be using volume of hemisphere | | | | | 325 × 8 or 2600 | M1 | oe | | | | | [2506, 2547] and 2600 and Yes | A1 | oe | | | | 11 | Alternative method 2 Works out volume of water as proportion of volume of hemisphere | | | | | | | $\frac{4}{3} \times \pi \times 12^3$ or 2304π | | oe eg $\frac{4}{3}\pi \times 1728$ | | | | | or [7216, 7239.2] | | allow without any multiplication signs | | | | | or | M1 | $eg \frac{4}{3}\pi 12^3$ | | | | | $\frac{2}{3} \times \pi \times 12^3$ or 1152 π | | S | | | | | or [3581, 3638] | | | | | | | 325 × 8 or 2600 | M1 | oe | | | | | their 2600 ÷ their 1152π | | oe eg their 2600 ÷ their [3581, 3638] | | | | | or [0.71, 0.73] | M1dep | or 72% | | | | | | | dep on M2 must be using volume of hemisphere | | | | | [71, 73](%) and Yes | A1 | oe eg 0.72 and 0.7 and Yes | | | ## Question 11 continues on the next page | | Alternative method 3 Works out tir | ne to fill 7 | 0% of volume of hemisphere | |------------|--|--------------|---| | | $\frac{4}{3} \times \pi \times 12^3$ or 2304π | | oe eg $\frac{4}{3}\pi \times 1728$ | | | or [7216, 7239.2] | N44 | allow without any multiplication signs | | | or | M1 | eg $\frac{4}{3}\pi 12^3$ | | | $\frac{2}{3} \times \pi \times 12^3$ or 1152 π | | | | | or [3581, 3638] | | | | 11
cont | $0.7 imes their 1152\pi$ or 806.4π | | 0e | | Cont | or [2506, 2547] | | $0.7 \times \text{their} [3581, 3638] \text{ or } \frac{4032}{5} \pi$ | | | or | M1dep | or | | | their 1152π ÷ 325 | | their [3581, 3638] ÷ 325 | | | or [11, 11.2] | | must be using volume of hemisphere | | | 0.7 × their 1152π ÷ 325 | | oe | | | or 0.7 × their [3581, 3638] ÷ 325 | M1dep | their [2506, 2547] ÷ 325 | | | or [7.7, 7.84] | | or 0.7 × their [11, 11.2] | | | [7.7, 7.84] and Yes | A1 | oe | ## Question 11 continues on the next page | | Additional Guidance | | |------|---|-------| | | Up to M3 may be awarded for correct work with no answer or incorrect answer, even if this is seen amongst multiple attempts | | | | Allow 1.33() for $\frac{4}{3}$ | | | | Allow 0.66() or 0.67 for $\frac{2}{3}$ | | | | π may be seen as [3.14, 3.142] eg Alt 1 $\frac{2}{3} \times 3.14 \times 12^3$ | M1 | | | If a number (or calculation) in terms of π is seen but π is subsequently omitted, treat
as a miscopy for M marks | | | 11 | eg Alt 1 | | | cont | 1152π | M1 | | | $0.7 \times 1152 = 806.4$ | M1dep | | | $325 \times 8 = 2600$ Yes | M1A0 | | | Yes cannot be implied by inequalities | | | | Alts 1 and 2 | | | | $325\text{cm}^3 \times 8$ seen is M1 even if evaluated incorrectly | | | | $325^3 \times 8$ seen is M0 unless recovered to 2600 | | | | Do not allow misreads of the given formula unless recovered | | | | eg1 using 12 ² instead of 12 ³ | | | | eg2 using $\frac{3}{4}$ instead of $\frac{4}{3}$ | | | | For 0.7 × their 1152 π , do not accept 70% × their 1152 π unless recovered | | | Q | Answer | Mark | Comments | | |----|--|------------|--|--------------| | | $8 \div 5$ or $19.2 \div 12$
or $\frac{8}{5}$ or $\frac{19.2}{12}$ or 1.6
or
$12 \div 5$ or $19.2 \div 8$
or $\frac{12}{5}$ or $\frac{19.2}{8}$ or 2.4 | M1 | oe use of a valid pair of side appropriate calculation or valeg 5 ÷ 8 or 0.625 or 5 ÷ 12 or [0.416, 0.417] | | | | $8 \div 5 = 19.2 \div 12 \text{ or } \frac{8}{5} = \frac{19.2}{12}$ or $12 \div 5 = 19.2 \div 8 \text{ or } \frac{12}{5} = \frac{19.2}{8}$ | A1 | oe showing sides are in property of $5 \div 8 = 12 \div 19.2$ or $\frac{5}{12} = \frac{8}{19.2}$ | portion | | | Additional Guidance | | | | | | For A1 equating may be implied by two calculations or two fractions with correct evaluation | | | | | | eg $8 \div 5 = 19.2 \div 12$ is implied by $8 = 5 \times 1.6$ and $19.2 = 12 \times 1.6$ | | | M1A1 | | 12 | For A1 equating may be implied by calculations eg1 $8 \div 5 = 19.2 \div 12$ is implied by $8 \div 5 = 1.6$ and $12 \times 1.6 = 19.2$ | | | M1A1 | | | eg2 8 ÷ 5 = 19.2 ÷ 12 is implied by $\frac{8}{5} \times 12 = 19.2$ | | | M1A1 | | | $5 \times 19.2 = 8 \times 12$ | | | M1A1 | | | $5 \times 19.2 = 96$ and $8 \times 12 = 96$ | | | M1A1 | | | Non-contradictory working can be igr | | าร | M1A1 | | | Ignore words eg references to scale | factors, e | nlargement, angles | | | | Working on diagrams may be seen eg1 Arrows or lines from 5 to 8 and 12 to 19.2 with × 1.6 on them eg2 Arrows or lines from 5 to 8 and 12 to 19.2 with 1.6 on them Arrows or lines must unambiguously link relevant numbers | | | M1A1
M1A0 | | | For $8 \div 5$ or $\frac{8}{5}$ allow $8:5$ etc | | | | | Q | Answer | Mark | Comments | | | |----|--|------------|---|------------------------------|--| | | $80 \times x$ or $80x$ or $x \times 80$ or $x80$ or $x \div 60$ or $\frac{x}{60}$ or $\frac{1}{60}x$ or $x \div \frac{1}{60}$ or $80 \div 60$ or $\frac{80}{60}$ | M1 | teabags per hour boxes per minute | | | | | $\frac{80x}{60} \left(= \frac{4x}{3} \right)$ or $80 \div 60 \times x \left(= \frac{4x}{3} \right)$ | A1 | oe showing 80 and 60 and x eg $\frac{80 \times x}{60} \left(= \frac{4x}{3} \right)$ or $x = \frac{80}{60}$ or $x = \frac{4x}{3}$ or $x = \frac{4x}{3}$ or $x = \frac{4x}{3}$ | $\left(=\frac{4x}{3}\right)$ | | | | Ade | ditional G | Guidance | | | | | M1 may be awarded for correct work with no answer or incorrect answer, even if this is seen amongst multiple attempts | | | | | | 13 | Do not allow M1 if only seen embedd calculation eg $80x \times 4 = 320x$ | ed in an i | ncorrect expression or | MO | | | | $60 \times \frac{4x}{3} = 80x$ (M1 allowed as $80x$ is not embedded in an incorrect expression or calculation, A0 because using the given answer) | | | M1A0 | | | | Condone $x = 80 \div 60$ | | | M1A0 | | | | $\frac{80x}{60} \left(= \frac{4x}{3} \right)$ | | | M1A1 | | | | $\frac{80}{60} = \frac{4}{3} \text{ and } \frac{4}{3} \times x \left(= \frac{4x}{3} \right)$ | | | M1A1 | | | | $\frac{80}{60} = \frac{4}{3}$ and $\frac{4x}{3}$ | | | M1A0 | | | | No equivalents allowed for M1 | | | | | | | Ignore units | | | | | | | Condone 1.33() for $\frac{4}{3}$ | | | | | | | Ignore non-contradictory working after | er M1A1 s | een | | | | Q | Answer | Mark | Comments | | |-------|--|-------|---|--| | | Alternative method 1 Works out with hourly | | ate of the percentage of employees
than £17 | | | | 32 ÷ 2 or 16 | M1 | oe
implied by 41 or 82 | | | | $(15 + 10 + \text{their } 16) \div 123$
or $41 \div 123$
or $\frac{1}{3}$ or $0.33()$
or $(66 + \text{their } 16) \div 123$
or $82 \div 123$
or $\frac{2}{3}$ or $0.66()$ or 0.67 | M1dep | oe eg (123 – 66 – their 16) ÷ 123
or
13(.0)(%) + [12, 12.2](%) + 8(.1)(%) | | | 14(a) | 33(.3)(%) | A1 | oe eg 0.33(3) and 0.3
allow 33.2(%)
from 13(%) + 12.2(%) + 8(%)
SC3 37 (or 36.9) and explains that a
minimum of 12 of 32 people earn more
than £17 | | | | Alternative method 2 Compares best estimate of the number of employees with hourly rate more than £17 with 30% of number of employees | | | | | | 32 ÷ 2 or 16 | M1 | oe
implied by 41 or 82 | | | | 0.3 × 123 or 36.9
or
0.7 × 123 or 86.1 | M1 | oe
accept 36 or 37 for 36.9
accept 86 or 87 for 86.1 | | | | 41 and 36.9
or
82 and 86.1 | A1 | accept 36 or 37 for 36.9 accept 86 or 87 for 86.1 SC3 37 (or 36.9) and explains that a minimum of 12 of 32 people earn more than £17 | | ## Question 14(a) continues on the next page | | Alternative method 3 Shows that | a value o | f x gives a percentage > 30% | | | |---------------|--|------------|---|--|--| | | $(15 + 10 + x) \div 123$ | M2 | oe eg (25 + x) ÷ 123 | | | | | where $12 \leqslant x \leqslant 32$ | | must see 15 and 10 or 25 | | | | | $(15 + 10 + x) \div 123$ | | evaluations rounded or truncated to nearest integer or better | | | | | where $12 \leqslant x \leqslant 32$ and | A1 | SC3 37 (or 36.9) and explains that a | | | | | evaluates | , | minimum of 12 of 32 people earn more than £17 | | | | | $(15 + 10 + x) \div 123 \times 100$ correctly | | | | | | | Alternative method 4 Shows a nu | mber of e | employees that gives a percentage > 30% | | | | | 0.3 × 123 or 36.9 | M1 | oe | | | | 14(a)
cont | | IVII | accept 36 or 37 for 36.9 | | | | | 15 + 10 + x or $25 + x$ | M1dep | must see 15 and 10 or 25 | | | | | where $12 \leqslant x \leqslant 32$ | МТСОР | | | | | Cont | 36.9 and | | accept 36 or 37 for 36.9 | | | | | evaluates $15 + 10 + x$ correctly | A1 | SC3 37 (or 36.9) and explains that a minimum of 12 of 32 people earn more | | | | _ | where $12 \leqslant x \leqslant 32$ | | than £17 | | | | | Ad | ditional (| Guidance | | | | | Up to M2 may be awarded for correct answer, even if this is seen amongst | | | | | | | 16 may be seen by the table | | | | | | | Alt 1 67% needs further explanation to score A1 | | | | | | | Ignore irrelevant working in an otherwise fully correct response | | | | | | | For the SC3, minimum of 12 may be | implied by | an explanation that | | | | | 10 + 15 + x is at least 37 or 25 + x is | at least 3 | 7 | | | | | Responses involving interpolation sho | ould be es | scalated | | | | Q | Answer | Mark | Comments | | |--------|--|-------------|-----------------------|----| | | Valid reason B1 eg all employees in the second may earn less than £17 | | | | | | Ad | ditional G | Guidance | | | | Fewer than 12 employees could earn | more tha | n £17 per hour | B1 | | | Only 10 might get more than £17 in s (10 could be replaced by any integer | | | B1 | | | More than 12 in group 2 earn less that | an £17 | | В0 | | | Everyone in second group may earn | 14 or 15 o | or 16 | B1 | | | 21 people may earn between £14 and £17 (21 could be replaced by any integer from 22 to 32 inclusive) | | | B1 | | | More people may earn between £14 and £17 | | | | | 14(b) | People in the 14 to 20 group aren't evenly distributed | | | | | 1 1(3) | Not everyone in 14 – 20 earns more than £17 | | | | | | Not many in second group may get more than £17 | | | | | | Some of second group may get more | than £17 | | В0 | | | 14 to 20 includes people who get less | s than £17 | 7 | В0 | | | 2nd group includes some getting less than 17 | s than 17 a | and some getting more | В0 | | | We don't know what each person earns | | | B1 | | | We don't know how many of 2nd group earn less than £17 per hour | | | B1 | | | Under £17 isn't in the data | | | B1 | | | Grouped data or it is only an estimate or using midpoints or data is wrong | | | В0 | | | Ignore irrelevant working but do not i | gnore inco | orrect working | | | Q | Answer | Mark | Comments | | |-------|--|-------------|---|------------------| | | 12 × 66 or 792
and
17 × 32 or 544
and
30 × 15 or 450
and
70 × 10 or 700 | M1 | oe implied by 2486 may be seen by the table allow one product or fx value incorrect | e to
be | | | (their 792 + their 544 + their 450 + their 700) ÷ 123
or
2486 ÷ 123 | M1dep
A1 | oe eg $\frac{792 + 544 + 450 + 700}{66 + 32 + 15 + 10}$
condone bracket error if work
eg $792 + 544 + 450 + 700 \div$
allow 20.20 if M2 seen and r | king seen
123 | | 14(c) | Additional Guidance | | | | | | Four values with three correct from 792, 544, 450, 700 can score up to M2 if they add and divide by 123 | | | | | | Correct products or values seen but a different method used eg 123 ÷ 4 | | | | | | 20.2(1) in working with answer give | en as the i | interval $20 \leqslant p < 40$ | M2A0 | | | Ignore any references to statement B eg £20.21 which makes B wrong | | | | | | Condone 20.2, 20.21 etc for 20.21138 | | | | | | Do not allow rounding of any of their 4 values in the second mark eg 792 544 450 700 (800 + 544 + 450 + 700) ÷ 123 | | | M1
M0 | | Q | Answer | Mark | Comments | | |--------|--|--------------------|------------------------------|-----| | | Valid reason referring to the distribution | B1 | eg 98 employees earned below | £20 | | | Ad | ditional G | Guidance | | | | Less than a half earned more than £2 | 20 | | B1 | | | Over a half earned between £10 and | £14 | | B1 | | | Lots earned 10 to 14 | | | В0 | | | Only 25 people were over £20 | | | B1 | | | 25 people were over £20 | | | B0 | | | Not many earned more than the mea | n | | B0 | | | Most earned less than £20 | | | B1 | | | Some earned less than the mean, some earned more | | | В0 | | | Mean is not a real amount of money | | | В0 | | 444.15 | Median is between £10 and £14 | | | B1 | | 14(d) | Median is better or mode is better | | | B0 | | | Modal class is $10 \leqslant p < 14$ | | | B1 | | | The mode is between £10 and £14 (condone mode as modal class) | | | B1 | | | We don't know what each person earns | | | В0 | | | Grouped data or it is only an estimate or using midpoints or data is wrong | | | В0 | | | The range is large | The range is large | | | | | The data has extreme values or outli | ers or and | malous values | B1 | | | The data is (positively) skewed | | | B1 | | | The distribution is not symmetrical | | | B1 | | | The distribution is not evenly spread | | | B1 | | | Not representative | | | В0 | | | Lots of low values or high values can | make the | mean inaccurate | В0 | | | Ignore irrelevant working but do not ignore incorrect working | | | | | Q | Answer | Mark | Comments | | | |----|--|--------------------------|--|-----------|--| | | $2x^3 - 18x^2y + 5x^2y - 45xy^2$ | M1 | exactly 4 terms with 3 correct terms in any order may be seen in a grid implied by $2x^3 - 13x^2y$ with 0 term or $-13x^2y - 45xy^2$ with 0 term | one other | | | | $2x^{3} - 18x^{2}y + 5x^{2}y - 45xy^{2}$ or $2x^{3} - 13x^{2}y - 45xy^{2}$ | A1 | terms in any order do not allow if only seen in a | grid | | | | Additional Guidance | | | | | | | A correct term includes the sign (in a grid allow eg $5x^2y$ for $+5x^2y$) | | | | | | 15 | Condone four correct terms followed by incorrect simplification of x^2y terms, otherwise do not allow further incorrect work eg1 $2x^3 - 18x^2y + 5x^2y - 45xy^2 = 2x^3 + 13x^2y - 45xy^2$ eg2 $2x^3 - 18x^2y + 5x^2y - 45xy^2 = 36x^5y + 5x^2y - 45xy^2$ | | | | | | | Allow equivalent fully simplified terms | $\frac{1}{1}$ eg $5x^2y$ | may be seen as $5yx^2$ | | | | | For M1 allow coefficients to be incorrectly positioned eg $x^32 - 18x^2y + y5x^2 - 45xy^2$ | | | | | | | $2x^3 + -18x^2y + 5x^2y + -45xy^2$ has 4 correct terms but needs further simplification to score A1 | | | | | | | Terms must be processed eg do not allow $x^2 \times 2x$ for $2x^3$ | | | | | | Q | Answer | Mark | Comments | | | | | |----|--|---|---|------|--|--|--| | | 13 = 7a - 1 or $(a =) 2$ | M1 | M1 oe eg $\frac{131}{7-0}$ may be implied eg $(y =) 2x$ | | | | | | | $(y =) \frac{3}{5}x \dots$ or (gradient B =) $\frac{3}{5}$ | oe eg (gradient B =) 0.6 allow $(y =) \frac{3x+4}{5}$ | | | | | | | | gradient A = 2 and gradient B = $\frac{3}{5}$ | A1 | oe eg $2 > \frac{3}{5}$ condone $2x > \frac{3}{5}x$ | | | | | | | Ad | ditional G | Guidance | | | | | | | Up to M2 may be awarded for correct answer, even if this is seen amongst | | | | | | | | 16 | Condone incorrect y-intercept eg $a = 2$ $y = \frac{3}{5}x + 4$ gradient A = 2 gradient B = $\frac{3}{5}$ | M1M1
A1 | | | | | | | | It must be clear that the values 2 and question to award A1 | | | | | | | | | eg1 gradient A = 2 and gradient B = | statement needed) | M2A1 | | | | | | | eg2 $a = 2$ $y = \frac{3}{5}x + \frac{4}{5}$ | | M2A0 | | | | | | | eg3 $y = 2x - 1$ and $y = \frac{3}{5}x + \frac{4}{5}$ | 2 is grea | ter than $\frac{3}{5}$ | M2A1 | | | | | | eg4 $y = 2x - 1$ and $y = \frac{3}{5}x + \frac{4}{5}$ | M2A0 | | | | | | | | 13 = 7x - 1 or $x = 2$ must be recover | ered to aw | vard 1st M1 | | | | | | Q | Answer | Mark | Comments | | | | |----|---|-----------|---|--|--|--| | | Alternative method 1 Works out A | C and use | es it in triangle <i>ABC</i> | | | | | | $\cos 37 = \frac{AC}{4}$ | M1 | oe eg sin $53 = \frac{AC}{4}$ allow [0.798, 0.8] for cos 37 or sin 53 | | | | | | $(AC =) 4 \times \cos 37$
or $(AC =) [3.19, 3.2]$ | M1dep | oe eg (AC =) 4 × sin 53
allow [0.798, 0.8] for cos 37 or sin 53
may be seen on diagram | | | | | | $\sin x = \frac{\text{their} [3.19, 3.2]}{9.3}$ or $(x =) \sin^{-1} [0.34, 0.3441]$ | M1dep | oe eg cos $x = \frac{\sqrt{9.3^2 - \text{their } [3.19, 3.2]^2}}{9.3}$
or $(x =) 90 - \cos^{-1}[0.34, 0.3441]$ | | | | | 17 | [19.87, 20.13] | A1 | | | | | | | Alternative method 2 Works out angle ADC and uses it in triangle ABD | | | | | | | | (angle <i>ADC</i> =) 90 – 37
or (angle <i>ADC</i> =) 53 | M1 | oe eg (angle <i>ADC</i> =) 180 – 90 – 37
may be seen on diagram | | | | | | $\frac{\sin x}{4} = \frac{\sin (90 - 37)}{9.3}$ | M1dep | oe eg $\frac{4}{\sin x} = \frac{9.3}{\sin 53}$ | | | | | | $(\sin x =) \frac{\sin (90 - 37)}{9.3} \times 4$ | M1dep | oe | | | | | | or $(x =) \sin^{-1}[0.34, 0.3441]$ | | | | | | | | [19.87, 20.13] | A1 | | | | | # Question 17 continues on the next page | | Additional Guidance | | | | | |------------|---|------|--|--|--| | | Up to M3 may be awarded for correct work with no answer or incorrect answer, even if this is seen amongst multiple attempts | | | | | | | Allow any unambiguous notation for angles eg allow B for x | | | | | | | Alt 1 Allow any unambiguous notation for $AC = g y$ (condone x if clearly referring to AC) | | | | | | 17
cont | Alt 1 1st M1 must be an equation where AC is the only variable | | | | | | Cont | eg $AC^2 + (4\sin 37)^2 = 4^2$ | M1 | | | | | | Alt 1 A calculation that leads to AC scores M1M1 | | | | | | | eg $\sqrt{4^2 - (4 \sin 37)^2}$ | M1M1 | | | | | | Alt 1 3rd M1 must have $\sin x$ (or $\cos x$) as the subject or be a calculation that leads to x | | | | | | | Alt 2 53 only marked at angle BAC on diagram | MO | | | | | Q | Answer | Mark | Comments | | | | |----|--|------------|---|---------------|--|--| | | $xy = x + 8$ or $y = 1 + \frac{8}{x}$ | M1 | oe equation with fraction elim
or
oe equation with single fraction
two terms
eg $y \times x = x + 8$ or $y = \frac{x}{x} + \frac{x}{x}$ | on split into | | | | | xy - x = 8 or $x(y - 1) = 8$ oe equation with x terms college $x - xy = -8$ | | | | | | | 40 | $x = \frac{8}{y-1}$ or $x = \frac{-8}{1-y}$ oe equation with x the subject $= \frac{8}{1-y} = x$ | | | | | | | 18 | Additional Guidance | | | | | | | | Up to M2 may be awarded for correct answer, even if this is seen amongst | | | | | | | | Correct answer in working with answ | er repeate | ed on answer line without x = | | | | | | eg $x = \frac{8}{y-1}$ seen in working with answer $\frac{8}{y-1}$ | | | M1M1A1 | | | | | Do not allow incorrect simplification after correct answer seen | | | | | | | | eg $x = \frac{8}{y-1}$ $x = \frac{8}{y} - 8$ | | | | | | | | xy - x - 8 = 0 with no further correct | working | | M1M0 | | | | Q | Answer | Mark | Comments | | | |----|--|---------------|--|--|--| | | Alternative method 1 nth term = a | $an^2 + bn +$ | - c | | | | | (second differences =) 10
or $a = 5$ or $5n^2$ | M1 | second difference seen at least once and not contradicted by a different value unless recovered | | | | | $3-5 \times 1^2$ and $20-5 \times 2^2$
or -2 and 0
or $b=2$ or $2n$ | M1dep | may be seen by the sequence oe subtraction of $5n^2$ from any two consecutive terms eg $47 - 5 \times 3^2$ and $84 - 5 \times 4^2$ or 2 and 4 implied by $5n^2 + 2n$ | | |
 | $5 \times 1^2 + 2 \times 1 + c = 3$
or $5 + 2 + c = 3$
or $(2n + c \text{ and}) \ 2 \times 1 + c = -2$ | M1dep | oe substitution of $a=5$ and $b=2$
eg $5 \times 2^2 + 2 \times 2 + c = 20$
or
oe use of $2n+c$ and another term
eg $(2n+c)$ and $2 \times 2 + c = 0$ | | | | 19 | $5n^2 + 2n - 4$ | A1 | terms in any order SC2 $a = 5$ and $c = -4$ SC1 $c = -4$ | | | | | Alternative method 2 n th term = $an^2 + bn + c$ | | | | | | | (second differences =) 10 or $a = 5$ or $5n^2$ | M1 | second difference seen at least once and
not contradicted by a different value
unless recovered
may be seen by the sequence | | | | | $3 \times 5 + b = 17$ or $b = 2$ or $2n$ | M1dep | oe substitution of $a = 5$
eg $5 \times 5 + b = 27$
implied by $5n^2 + 2n$ | | | | | $5 \times 1^2 + 2 \times 1 + c = 3$
or $5 + 2 + c = 3$ | M1dep | oe substitution of $a = 5$ and $b = 2$
eg $5 \times 2^2 + 2 \times 2 + c = 20$ | | | | | $5n^2 + 2n - 4$ | A1 | terms in any order | | | Question 19 continues on the next page | | Alternative method 3 n th term = $an^2 + bn + c$ | | | | | | |------|--|---------------------------------|---|-----|--|--| | | Any 3 of
a + b + c = 3
4a + 2b + c = 20
9a + 3b + c = 47
16a + 4b + c = 84 | M1 | oe 3 equations | | | | | | 3a + b = 17 and $5a + b = 27or a = 5 and b = 2$ | l <i>b</i>
- 3 <i>b</i> = 81 | | | | | | | $5 \times 1^2 + 2 \times 1 + c = 3$
or $5 + 2 + c = 3$ | M1dep | oe substitution of $a = 5$ and $b = 2$
eg $5 \times 2^2 + 2 \times 2 + c = 20$ | | | | | 19 | $5n^2 + 2n - 4$ | A1 | terms in any order | | | | | cont | Additional Guidance | | | | | | | | Up to M3 may be awarded for correct answer, even if this is seen amongst | | | | | | | | Second differences = 10 scores M1 e | | | | | | | | Condone $n = 5n^2 + 2n - 4$ or $5n^2 + 6n^2 6n^2$ | M3A1 | | | | | | | Condone working in a different varial | M3A1 | | | | | | | The 3rd method mark cannot be implied ie $c = -4$ is only awarded M3 if the previous two method marks are seen | | | | | | | | Alt 1 2nd M1 cannot be awarded for recovered | | | | | | | | SC2 or SC1 can be awarded from wo | | | | | | | | SC2 or SC1 can be implied by a qua | | | | | | | | eg1 answer $5n^2 + 6n - 4$ | | | SC2 | | | | | eg2 answer $10n^2 + 3n - 4$ | SC1 | | | | | | Q | Answer | Mark | Comments | | | |-------|--|------|----------|--|--| | | 65 | B1 | | | | | 20(a) | Additional Guidance | | | | | | | 65 unambiguously linked to x on diagram with answer line blank | | | | | | Q | Answer | Mark | Comments | | | |-------|---|------------|----------|--|--| | | It is greater than the answer to part (a) | B1 | | | | | 20(b) | Ad | ditional G | Guidance | | | | | | | | | | | Q | Answer | Mark | Comments | | |-------|--|-----------------------------------|----------|--| | | No and valid statement | eg no it is angle ACD that is 70° | | | | | Ad | ditional G | Guidance | | | | Angles may be seen on the diagram | | | | | | No may be implied | | | | | | eg1 angle ADC is not 70 | | B1 | | | | eg2 angle y is 55 | | B1 | | | | Allow unambiguous indication of ang | les | | | | | eg y and D are both 55 so he is wron | B1 | | | | | No and angle <i>ADC</i> = 55° | B1 | | | | 20(c) | y is not 70 so no | B1 | | | | | No, neither angle is correct | B1 | | | | | No, he thinks AB and DC are parallel | B1 | | | | | No, he's used alternate angles | B1 | | | | | It should say alternate angles (no in | B1 | | | | | He has made mistakes | В0 | l | | | | He used the alternate segment theor | em incorr | ectly B1 | | | | Ignore irrelevant working but do not i | prrect working | | | | | eg No it is angle ACD that is 70° and | s 65 B0 | | | | | Responses saying he is correct | | В0 | | | Q | Answer | Mark | Comments | | | |----|--|-------|--|--|--| | | Alternative method 1 | | | | | | | 560 ÷ 500 or 1.12 | M1 | oe | | | | | ³ √their 1.12 or [1.038, 1.0385] | | may be implied | | | | | or
[3.8, 3.85] | M1dep | eg $\frac{r}{100}$ = [0.038, 0.0385] | | | | | 3.9 | A1 | | | | | | Alternative method 2 | | | | | | 21 | Trial of the form $500 \times x^3$ with $1 < x \le 1.1$ and correct evaluation | M1 | allow correct evaluation truncated or rounded to nearest integer or better allow working year by year value of x used must be seen | | | | | Two trials of the form $500 \times x^3$ each with $1 < x \le 1.1$ and correct evaluations, one with answer < 560 and one with answer > 560 | M1dep | allow correct evaluations truncated or rounded to nearest integer or better allow working year by year values of x used must be seen | | | | | 3.9 | A1 | | | | ## Question 21 continues on the next page | | Additional Guidance | | | | | | | | |------------|--|-----------|--|-------|------------|-------------|----|--------| | | Up to M2 may be awarded for correct work with no answer or incorrect answer, even if this is seen amongst multiple attempts | | | | | | | | | | 1. | .01 | 515.1505 | | 1.0385 | 560.0019083 | | | | | 1. | .02 | 530.604 | | 1.039 | 560.8111595 | | | | | 1. | .03 | 546.3635 | | 1.04 | 562.432 | | | | | 1. | .038 | 559.193436 | | 1.05 | 578.8125 | | | | | | | | | 1.06 | 595.508 | | | | | 1.07 612.5215 | | | | | | | | | | 1.08 629.856 | | | | | | | | | | 1.09 647.5145 | | | | | | | | | | 1.1 665.5 | | | | | | | | | 21
cont | eg of accepted values For 578.8125 allow 578, 579, 578.8, 578.81, 578.812, 578.813 | | | | | | 13 | | | | Alt 2 example of working year by year (allow intermediate values to be truncated or rounded to the nearest penny, also allow if given to the next penny) $500 \times 1.035 = 517.5$ $517.5 \times 1.035 = 535.6125 \text{ (allow } 535.61 \text{ or } 535.62)$ $535.61 \times 1.035 = 554.35635$ | | | | | | | | | | Incorrec | ct trials | and evaluations | s cai | n be ignor | ed | | | | | | | rect working = $60 3\sqrt{60} =$ | 3.9 | 1 | | | МОМОАО | | | Wrong a | answer | (eg 4) with no c | corre | ect method | d seen | | M0M0A0 | | | | | eme that favours
38 ³ scores M1M | | | | | | | | 560 – 50
500 | :00 | h no further corr | | | | | Момо | | Q | Answer | Mark | Comments | | |-------|--|------|---|------| | | $(x_2 =) 4.1(0)$ | B1 | | | | | $(x_3 =) [4.176, 4.178]$ or 4.18 | B1ft | ft their 4.1(0) rounded to at least 2 dp SC1 x_2 = [4.176, 4.178] or 4.18 | | | | Additional Guidance | | | | | 22(a) | Allow second B1 for $x_3 = 4.2$ with acceptable answer seen in working | | | | | | $x_2 = 7.8$ | | | В0 | | | $x_3 = 6.59$ | | | B1ft | | | SC1 is for using $x_0 = 4$ | | | | | Q | Answer | Mark | Comments | |-------|---------------------------------------|------|-----------------------------| | | 4.25 < value ≤ 4.39 | B1 | ignore any iteration number | | 22(b) | Additional Guidance | | | | | Ignore other values if B1 response se | en | | | Q | Answer | Mark | Comments | |----|--|------
--| | | $\frac{3}{8}$ (x) $\frac{2}{7}$ or $\frac{6}{56}$ or $\frac{3}{28}$ | M1 | oe fraction, decimal or percentage allow $\frac{2}{7}$ to be [0.285, 0.286] or [28.5, 28.6]% allow $\frac{6}{56}$ to be [0.107, 0.107143] or [10.7, 10.7143]% may be seen on a tree diagram allow 6 out of 56 | | 23 | $\frac{1}{7}$ (x) $\frac{1}{4}$ (x 2)
or $\frac{1}{28}$ (x 2) or $\frac{2}{28}$ or $\frac{1}{14}$ | M1 | oe fraction, decimal or percentage allow $\frac{1}{7}$ to be $[0.142, 0.143]$ or $[14.2, 14.3]\%$ allow $\frac{1}{28}$ to be $[0.035, 0.036]$ or $[3.5, 3.6]\%$ allow $\frac{2}{28}$ to be $[0.071, 0.07143]$ or $[7.1, 7.143]\%$ may be seen on a tree diagram allow 1 out of 28 or 2 out of 28 | | | $\frac{6}{56}$ and $\frac{2}{28}$ | A1 | oe fractions, decimals or percentages allow 6 out of 56 and 2 out of 28 | | | Probabilities in comparable form and Option 1 | A1ft | ft their $\frac{6}{56}$ and their $\frac{2}{28}$ with M2A0 correct comparisons include $\frac{3}{28}$ and $\frac{2}{28}$ $\frac{6}{56}$ and $\frac{4}{56}$ 0.107 and 0.071 10.7% and 7.1% 6 out of 56 and 4 out of 56 | ## Question 23 continues on the next page | | Additional Guidance | | | | | | |------------|--|--------|--|--|--|--| | | Up to M2 may be awarded for correct work with no answer or incorrect answer, even if this is seen amongst multiple attempts 3 ways to win in Option 1 and 2 ways to win in Option 2 so Option 1 | | | | | | | | | | | | | | | 23
cont | $\frac{3}{8} \times \frac{2}{7} = \frac{6}{56}$ $\frac{1}{7} \times \frac{1}{4} = \frac{1}{28}$ | M1M1 | | | | | | | $\frac{6}{56}$ and $\frac{2}{56}$ and Option 1 | A0A1ft | | | | | | | Assuming replacement can score a maximum of M0M1A0A0 | | | | | | | | Choosing Option 1 cannot be implied by inequalities | | | | | | | Q | Answer | Mark | Comments | | |---|---|------|---|--------| | | 64.5 or 65.5
or
25 or 35 | M1 | allow 65.49 or 34.9 implied by 4160.25 or 4290 or 8320.5 or 8580.5 or 625 or 1225 |).25 | | | $2 \times \text{their } 65.5^2 - \text{their } 25^2$ or $2 \times 4290.25 - 625$ or $8580.5 - 625$ | M1 | their 65.5 must be (65, 66]
their 25 must be [20, 30) | | | | 65.5 and 25 and 7955.5 | A1 | | | | 24 | Additional Guidance | | | | | | Up to M2 may be awarded for correct work with no answer or incorrect answer, even if this is seen amongst multiple attempts | | | | | If multiple attempts are seen and one is fully correct, the correct one must be unambiguously selected (eg ticked or circled) to award A1 if the answ line is blank | | | | | | | Note that M0M1A0 is possible eg $2 \times 66^2 - 21^2$ | | | M0M1A0 | | | Condone eg 65.50 for 65.5 | | | | | Q | Answer | Mark | Comments | | |----|---|------------|---|---------| | | $\frac{(x-5)(x+2)}{(x-2)(x+2)} \text{ and } \frac{(x+5)(x-2)}{(x+2)(x-2)}$ | M1 | $(x-2)(x+2)$ or $x^2-2x+2x$ be seen (expansion may be signid) brackets in any order if the brackets are not shown numerators, expansions must may be seen as a single fraction. | for the | | | $x^{2} - 5x + 2x - 10$ or $x^{2} - 3x - 10$ or $x^{2} + 5x - 2x - 10$ or $x^{2} + 3x - 10$ | M1 | correct expansion of $(x - 5)(x + 2)$
or $(x + 5)(x - 2)$
ignore denominators
may be seen in a grid
implied by $2x^2$ – 20 if no errors seen expansions | | | | M2 seen with no errors allow M2 so and $\frac{2x^2 - 20}{x^2 - 4}$ A1 and $a = 2$ | | | | | 25 | Additional Guidance | | | | | | Missing brackets must be recovered but condone missing closing bracket at the end of a numerator or denominator eg $\frac{(x-5)(x+2)}{(x-2)(x+2)} + \frac{(x+5)(x-2)}{(x+2)(x-2)}$ | | | 1st M1 | | | 2nd M1 is awarded for four correct terms even if subsequently simplified incorrectly | | | | | | For terms seen in a grid, signs must l | be correct | (allow eg $2x$ for $+2x$) | | | | For 1st M1 allow multiplication signs | | | | | | After M2A1 ignore incorrect values stated $eg \ a = 2 \ b = -20$ | | | | | | $\frac{2x^2 - 20}{x^2 - 4}$ may come from wrong working or incomplete working | | | | | | eg $\frac{(x-5)(x+2)}{(x-2)(x+2)} + \frac{(x+5)(x-2)}{(x+2)(x-2)}$ | | | M1 | | | $\frac{x^2 - 10 + x^2 - 10}{x^2 - 4} = \frac{2x^2 - 20}{x^2 - 4}$ | | | M0A0 | | Q | Answer | Mark | Comments | | |-------|--------|-------------|----------|--| | | (0, 2) | B1 | | | | 26(a) | Ac | lditional (| Guidance | | | | | | | | | Q | Answer | Mark | Comments | | |-------|---------------------|------|---------------------------|----| | | $y = -x^2$ | B1 | oe equation eg $x^2 = -y$ | | | | Additional Guidance | | | | | 26(b) | $y = -1x^2 + 0$ | | | B1 | | | $y = -(x^2)$ | | | B1 | | | $-x^2$ | | | В0 | | Q | Answer | Mark | Comments | | |-------|--|-------------|-------------------------------|------| | | Translation | B1 | allow eg translate(d) | | | | $\begin{pmatrix} -3\\0 \end{pmatrix}$ | B1 | | | | | Ad | lditional (| Guidance | | | | Do not accept a vector given as coordiffraction line | dinates or | with missing brackets or with | | | | Translation from (0, 0) | | | B1B0 | | | Translation horizontally by 3 | | | B1B0 | | 26(c) | Translate 3 to the left and 3 down | | | B1B0 | | | Reflect by $\begin{pmatrix} -3\\0 \end{pmatrix}$ | | | B0B1 | | | Giving a combined transformation is | B0B0 | | | | | Rotate by $\begin{pmatrix} -3\\0 \end{pmatrix}$ and reflect in the x - | -axis | | B0B0 | | | Ignore references to movement if ve | ctor is cor | rect | | | | eg Move to the right by $\begin{pmatrix} -3\\0 \end{pmatrix}$ | | | B0B1 |