| Candidate | Centre | Candidate |  |  |
|-----------|--------|-----------|--|--|
| Name      | Number | Number    |  |  |
|           |        | 0         |  |  |



# **GCSE**

4250/01

### **GEOLOGY**

Theory Paper

(Paper version of on-screen assessment)

A.M. FRIDAY, 20 May 2011

 $1\frac{1}{2}$  hours

| Examiner only |                 |                   |  |
|---------------|-----------------|-------------------|--|
| Question      | Maximum<br>Mark | Candidate<br>Mark |  |
| 1             | 22              |                   |  |
| 2             | 9               |                   |  |
| 3             | 12              |                   |  |
| 4             | 16              |                   |  |
| 5             | 11              |                   |  |
| 6             | 23              |                   |  |
| 7             | 7               |                   |  |
| Total         | 100             |                   |  |

#### ADDITIONAL MATERIALS

In addition to this examination paper you will need a:

- Data Sheet;
- · calculator.

#### INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Answer all questions.

Write your answers in the spaces provided.

#### INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded that assessment will take into account the quality of written communication used in your answers to questions 1(e) and 2(a)(ii).

# **Question 1**

Figure 1 is a cross-section through an open pit from which a mineral deposit is being extracted.



Figure 1

(a) Figure 2 shows an enlargement of rock A from Figure 1.



Rock A. Grey, finegrained, laminated rock

0 1 cm

Figure 2

| i) | Name rock <b>A</b> . Tick ( <b>✓</b> ) only <b>one</b> box. |              |  |  |  |  |
|----|-------------------------------------------------------------|--------------|--|--|--|--|
|    |                                                             | limestone    |  |  |  |  |
|    |                                                             | sandstone    |  |  |  |  |
|    |                                                             | shale        |  |  |  |  |
|    |                                                             | conglomerate |  |  |  |  |
|    |                                                             | breccia      |  |  |  |  |

(4250-01)

Figure 3 shows a fossil specimen collected from rock A in Figure 1.



Scale ×1

Figure 3

| (ii)  | Name the fossil. Tick (✓) only <b>one</b> box.                                                                             | [1]         |
|-------|----------------------------------------------------------------------------------------------------------------------------|-------------|
|       | graptolite                                                                                                                 |             |
|       | ammonite                                                                                                                   |             |
|       | goniatite                                                                                                                  |             |
|       | coral                                                                                                                      |             |
|       | trilobite                                                                                                                  |             |
| (iii) | Identify the part of the fossil labelled ${\bf B}$ by circling the correct term from following list.                       | the         |
|       | stipe leaf thecae suture line cell                                                                                         |             |
| (iv)  | Rock <b>A</b> in <b>Figure 1</b> is Jurassic in age. Give <b>one</b> explanation for deciding upon age for rock <b>A</b> . | this<br>[1] |
|       |                                                                                                                            |             |

| (v) | State the most likely environment of deposition of rock <b>A</b> . Tick ( <b>/</b> ) only <b>one</b> box. [1] |  |
|-----|---------------------------------------------------------------------------------------------------------------|--|
|     | formed by the evaporation of sea water                                                                        |  |
|     | deposited from ice melt                                                                                       |  |
|     | deposited by a river                                                                                          |  |
|     | deposited as wind-formed dunes                                                                                |  |
|     | marine deposition                                                                                             |  |

4250 010005 (b) Figure 4 shows a field sketch of the till in Figure 1.



Figure 4

| (i) | he <b>Data Sheet</b> , describe the grain shape of the granite boulder in the till only <b>two</b> boxes. | [2] |
|-----|-----------------------------------------------------------------------------------------------------------|-----|
|     | rounded                                                                                                   |     |
|     | subrounded                                                                                                |     |
|     | angular                                                                                                   |     |
|     | high sphericity                                                                                           |     |
|     | low sphericity                                                                                            |     |

| i)  | State the          | e most likely agent of transport for the till. Tick ( ) only <b>one</b> box. [1]                                                  |  |
|-----|--------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|
|     |                    | sea                                                                                                                               |  |
|     |                    | wind                                                                                                                              |  |
|     |                    | river                                                                                                                             |  |
|     |                    | gravity                                                                                                                           |  |
|     |                    | ice                                                                                                                               |  |
| ••  | 3.7                |                                                                                                                                   |  |
| ii) | Name t             | wo fragments in the till that have been transported from outside the area in Figure 1. Tick ( $\mathcal{I}$ ) only two boxes. [1] |  |
| i)  | Name to shown i    | wo fragments in the till that have been transported from outside the area in Figure 1. Tick ( ) only two boxes. [1] sandstone     |  |
| i)  | Name tr<br>shown i | n <b>Figure 1</b> . Tick (✓) only <b>two</b> boxes. [1]                                                                           |  |
| i)  | Name to shown i    | n <b>Figure 1</b> . Tick (✓) only <b>two</b> boxes. [1] sandstone                                                                 |  |
| ii) | Name to shown it   | n Figure 1. Tick (✓) only two boxes. [1] sandstone slate                                                                          |  |

(4250-01)

Turn over.

(c) Figure 1 demonstrates that a fault was involved in the formation of the mineral deposit.



Figure 1

- (i) Draw arrows in the boxes on **Figure 1** to indicate the downthrow and upthrow sides of the fault. [1]
- (ii) Name the type of fault in **Figure 1**. Tick (✓) only **one** box. [1]

normal fault
reverse fault
thrust fault

strike-slip fault

transform fault

|     | (iii) State the main type of tectonic stress involved in the formation of the fault. Tick (✓) only <b>one</b> box. |                   |                                                |                    |                            |        |
|-----|--------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------------------------|--------------------|----------------------------|--------|
|     |                                                                                                                    | she               | ar                                             |                    |                            |        |
|     | tension                                                                                                            |                   |                                                |                    |                            |        |
|     |                                                                                                                    | con               | npression                                      |                    |                            |        |
| (d) | (i)                                                                                                                | Table 1 show      | ws the properties of osit in <b>Figure 1</b> . | the metal ore and  | gangue mineral found       | in the |
|     |                                                                                                                    |                   |                                                |                    |                            |        |
|     |                                                                                                                    |                   | Hardness                                       | Streak             | Cleavage                   |        |
|     | metal                                                                                                              | ore               | Hardness $2\frac{1}{2}$                        | <b>Streak</b> grey | Cleavage breaks into cubes |        |
|     |                                                                                                                    | ore<br>ne mineral |                                                |                    |                            |        |
|     |                                                                                                                    |                   | 2½                                             | grey               | breaks into cubes          |        |
|     |                                                                                                                    | ne mineral        | 2 <sup>1</sup> / <sub>2</sub> 7                | grey none          | breaks into cubes none     | [2]    |
|     |                                                                                                                    | ne mineral        | 2½<br>7                                        | grey none          | breaks into cubes none     | [2]    |

(4250-01)

Turn over.

|     | (ii)  | The mineral deposit in <b>Figure 1</b> is a hydrothermal vein. Explain how a hydrothermal vein forms. [3]                                                       |
|-----|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | (iii) | 25,000 tonnes of mineral deposit were extracted, from which 1,000 tonnes of metal ore were separated. Calculate the percentage of metal ore in the deposit. [1] |
| (e) | Carl  | Percentage of metal ore =                                                                                                                                       |
|     |       |                                                                                                                                                                 |
|     |       |                                                                                                                                                                 |
|     |       |                                                                                                                                                                 |
|     |       |                                                                                                                                                                 |

4250 010011

# **BLANK PAGE**

[1]

### **Question 2**

(a) Figures 5 and 6 show a photograph and cross-section across Ingleborough.



Figure 5



Figure 6

State the dip of the bedding. Tick  $(\mathcal{I})$  only **one** box.

dips to the west at 45° horizontal dips to the east at 20° dips to the west at 20° vertical

(i)

|    | 3 |
|----|---|
|    | - |
| 0  | 0 |
| S  | 0 |
| CI | _ |
|    |   |

| (ii)  |               | spellii    |         | logy of the area has influenced the land forms. Pay grammar, use suitable terms and make sure your answer [3]                                   |
|-------|---------------|------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------|
|       |               |            |         |                                                                                                                                                 |
|       |               |            |         |                                                                                                                                                 |
|       |               |            |         |                                                                                                                                                 |
| (iii) | led to the fo | rmation (1 | on of t | ne is an unconformity. Describe the order of events which his structure by writing each of the following events in its the following table. [2] |
|       | erosio        |            | f tha I | ower Palaeozoic                                                                                                                                 |
|       | -             | · ·        |         | mestone, shales and sandstone                                                                                                                   |
|       | -             | g and i    |         | mestone, shales and sandstone                                                                                                                   |
|       |               | S          | 1 0     |                                                                                                                                                 |
| yo    | ungest        |            | 5       | uplift and erosion                                                                                                                              |
|       |               |            | 4       |                                                                                                                                                 |
|       |               |            | 3       |                                                                                                                                                 |
|       |               |            | 2       |                                                                                                                                                 |
| 0     | ldest         |            | 1       |                                                                                                                                                 |

(b) Figure 7 is a photograph of the surface of the limestone shown in Figure 6. This characteristic landform is produced by weathering.



Figure 7

| (i)  | Name the main weathering process responsible for the formation of this surface Tick $(\mathcal{I})$ only <b>one</b> box. | e.<br>[1] |
|------|--------------------------------------------------------------------------------------------------------------------------|-----------|
|      | physical                                                                                                                 |           |
|      | chemical                                                                                                                 |           |
|      | biological                                                                                                               |           |
| (ii) | Describe the weathering process that has produced this landform.                                                         | [2]       |
|      |                                                                                                                          |           |
|      |                                                                                                                          |           |

4250 010015

# **BLANK PAGE**

(4250-01)

# **Question 3**

(a) Figure 8 is a cross-section across a mid-ocean ridge.



Figure 8

| (i)  | State the age of the ocean crust at C.                                                                                 | [1] |
|------|------------------------------------------------------------------------------------------------------------------------|-----|
|      | million years                                                                                                          |     |
| (ii) | Name an igneous rock you would expect to find near the surface at <b>D</b> . Tick $(\mathcal{I})$ only <b>one</b> box. | [1] |
|      | turbidite                                                                                                              |     |
|      | granite                                                                                                                |     |
|      | gabbro                                                                                                                 |     |
|      | breccia                                                                                                                |     |
|      | basalt                                                                                                                 |     |

4250 010017

| (iii) | Draw arrows in the boxes on <b>Figure 8</b> to show the direction of plate movem each side of the mid-ocean ridge.        | ent<br>[1] |
|-------|---------------------------------------------------------------------------------------------------------------------------|------------|
| (iv)  | Name the type of plate margin shown in <b>Figure 8</b> . Tick (✓) only <b>one</b> box.                                    | [1]        |
|       | convergent (destructive, oceanic-oceanic)                                                                                 |            |
|       | conservative                                                                                                              |            |
|       | convergent (destructive, oceanic-continental)                                                                             |            |
|       | divergent (constructive)                                                                                                  |            |
|       | convergent (destructive, continental-continental)                                                                         |            |
| (v)   | Which <b>two</b> of the following statements correctly describe the lithosphere? Tick ( <b>/</b> ) only <b>two</b> boxes. | [2]        |
|       | only crust                                                                                                                |            |
|       | crust and upper mantle                                                                                                    |            |
|       | cold, rigid solid                                                                                                         |            |
|       | weak, partially molten                                                                                                    |            |
|       | only mantle                                                                                                               |            |
|       | hot, weak solid                                                                                                           |            |
| (vi)  | Describe <b>one</b> piece of evidence from <b>Figure 8</b> which can be used to support theory of sea floor spreading.    | the [3]    |
|       |                                                                                                                           |            |

(4250-01)

Turn over.

(b) Figure 9 is a photograph of structures found in the crust at **D** on Figure 8.



Figure 9

| (i)  | (i) Name the structure at <b>D.</b> Tick ( <b>J</b> ) only <b>one</b> box. |                            |     |   |  |
|------|----------------------------------------------------------------------------|----------------------------|-----|---|--|
|      |                                                                            | columnar jointing          |     |   |  |
|      |                                                                            | pillow lavas               |     |   |  |
|      |                                                                            | dyke                       |     |   |  |
|      |                                                                            | ripple marks               |     |   |  |
|      |                                                                            | graded bedding             |     |   |  |
| (ii) | Explain                                                                    | how these structures form. | [2] |   |  |
|      |                                                                            |                            |     |   |  |
|      |                                                                            |                            |     |   |  |
|      |                                                                            |                            |     | ĺ |  |

12

# **BLANK PAGE**

(4250-01) **Turn over.** 

### **Question 4**

(a) Figure 10 is a partly completed diagram of the rock cycle.



Figure 10

Table 2 states two processes of the rock cycle. Write in the numbers 1, 2, 3 or 4 from Figure 10 against the correct process.

| Process               | Number |
|-----------------------|--------|
| melting               |        |
| transport and erosion |        |

Table 2

(b) Figure 11 shows rock  $\mathbf{E}$  which is from one of the major rock groups in the rock cycle.

Rock E



Figure 11

| (1)  | Give tw | o observations which apply to rock E. Tick () only two boxes.                     | [2] |
|------|---------|-----------------------------------------------------------------------------------|-----|
|      |         | fragmental (clastic)                                                              |     |
|      |         | foliated                                                                          |     |
|      |         | random crystal orientation                                                        |     |
|      |         | does not react with hydrochloric acid                                             |     |
|      |         | poorly sorted                                                                     |     |
| (ii) | Name t  | he major rock group to which rock <b>E</b> belongs. Tick (✓) only <b>one</b> box. | [1] |
|      |         | igneous                                                                           |     |
|      |         | metamorphic                                                                       |     |
|      |         | sedimentary                                                                       |     |

(4250-01)

| (iii) | Describe the origin of the garnet in rock $E$ . Tick ( $\checkmark$ ) only <b>one</b> box. |                   |                  |                | [1]     |     |
|-------|--------------------------------------------------------------------------------------------|-------------------|------------------|----------------|---------|-----|
|       |                                                                                            | crystallisation f | from a melt      |                |         |     |
|       |                                                                                            | weathered from    | a rock, transpo  | orted and depo | osited  |     |
|       |                                                                                            | crystallisation a | as a cement      |                |         |     |
|       |                                                                                            | recrystallisation | 1                |                |         |     |
|       |                                                                                            | precipitation d   | ue to evaporatio | n              |         |     |
| (iv)  | Circle t                                                                                   | he correct name   | of rock E.       |                |         | [1] |
|       | marble                                                                                     | slate             | sandstone        | schist         | granite |     |

(c) Figure 12 is a map showing an igneous body and a polished section of rock F collected from the centre of the igneous body.



Figure 12

| (i)  | Which <b>three</b> of the following statements correctly describe the igneous body? Tick ( <b>J</b> ) <b>three</b> boxes only. | [3] |
|------|--------------------------------------------------------------------------------------------------------------------------------|-----|
|      | dyke                                                                                                                           |     |
|      | cuts through the bedding                                                                                                       |     |
|      | pluton                                                                                                                         |     |
|      | extrusive                                                                                                                      |     |
|      | intrusive                                                                                                                      |     |
|      | parallel to the bedding                                                                                                        |     |
| (ii) | Circle the correct name of rock <b>F</b> .                                                                                     | [1] |
|      | granite gabbro basalt breccia schist                                                                                           |     |

(4250-01)

(iii) A survey was carried out to measure the size of the feldspar crystals in rock F from the edge of the igneous body to the centre in Figure 12. The survey line (X-Y) is shown on Figure 12. The results of the survey are shown in Table 3.

| Distance from edge of intrusion (m) | 0 ( <b>X</b> ) | 5 | 10  | 17.5 | 20 | 25 ( <b>Y</b> ) |
|-------------------------------------|----------------|---|-----|------|----|-----------------|
| Size of feldspar crystals (mm)      | 1              | 4 | 7.5 | 8    | 9  | 9.5             |

Table 3

Plot the data shown in **Table 3** on the graph below. The first point has already been plotted for you. [3]



| (iv) | <b>Describe</b> how the crystals change in size along the survey line and <b>explain</b> change in crystal size. | the<br>[2] |
|------|------------------------------------------------------------------------------------------------------------------|------------|
|      |                                                                                                                  |            |

16

# **BLANK PAGE**

(4250-01) **Turn over.** 

# **Question 5**

(a) Figure 13 is a map showing the location of the Indian Ocean earthquake on 29th December 2004 and the travel times for the resulting tsunami.



Figure 13

| (i) | State wl | hy an earthquake occurred at this location. Tick (✓) only <b>two</b> boxes. | [2] |
|-----|----------|-----------------------------------------------------------------------------|-----|
|     |          | sea-floor spreading                                                         |     |
|     |          | convergent plate margin (destructive, oceanic-continental)                  |     |
|     |          | divergent plate margin                                                      |     |
|     |          | subduction                                                                  |     |
|     |          | conservative plate margin                                                   |     |
|     |          | transform fault                                                             |     |
|     |          | convergent plate margin (destructive, oceanic-oceanic)                      |     |

| (ii)      | The tsunami took 5 hours to reach Australia (G). State how long the tsu took to reach Sri Lanka (H) to the nearest hour.                | nami<br>[1]   |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------|
|           | hours                                                                                                                                   |               |
| (iii)<br> | The island of Madagascar ( <b>J</b> ) is 6,000 km from the earthquake epice Calculate the speed of the tsunami across the Indian Ocean. | entre.<br>[2] |
|           | <i>Speed</i> = km per                                                                                                                   | hour          |

(b) Figure 14 shows the behaviour of a tsunami as it reaches shallow water.



Figure 14

| (i)   | Using <b>Figure 14</b> , choose words from the list below to complete the sentences. |               |                   |                                             |        |
|-------|--------------------------------------------------------------------------------------|---------------|-------------------|---------------------------------------------|--------|
|       | high speed                                                                           | small         | low speed         | large                                       |        |
|       | In deep ocean wat                                                                    | er the tsunar | ni waves form     |                                             | crests |
|       | barely noticeable a                                                                  | and harmless, | , which travel at |                                             | Ir     |
|       | shallow water near                                                                   | coastlines, a | tsunami travels   | at                                          | bu     |
|       | forms                                                                                | v             | vaves.            |                                             |        |
| (ii)  | Give one reason wh                                                                   | y tsunamis ar |                   | ct in deep water.                           | [1]    |
| (iii) |                                                                                      |               |                   | le in 14 countries.<br>now such a loss of 1 |        |
|       |                                                                                      |               |                   |                                             |        |

# **Question 6**

(a) Figure 15 is a graph showing the permeability and porosity of different rock types.



Figure 15

| (i         | ) State wl  | hich rock has                          | the highest pe | orosity. Tick (• | /) only <b>one</b> box. | [1]              |
|------------|-------------|----------------------------------------|----------------|------------------|-------------------------|------------------|
|            |             | limestone                              |                |                  |                         |                  |
|            |             | conglomera                             | te             |                  |                         |                  |
|            |             | shale                                  |                |                  |                         |                  |
|            |             | sandstone                              |                |                  |                         |                  |
|            |             | till                                   |                |                  |                         |                  |
| (ii        |             | Figure 15, ch                          | noose words/   | phrases from     | the list below to       | complete the [5] |
|            | stores      | fluids                                 | sandstone      | shale            | aquifer                 |                  |
|            | lime        | estone                                 | liner a        | llows fluids to  | pass through            |                  |
|            |             |                                        |                |                  |                         |                  |
|            |             | is a rock                              | with a high p  | orosity and pe   | ermeability and the     | erefore makes a  |
| good       |             | ······•••••••••••••••••••••••••••••••• |                |                  |                         |                  |
|            |             | is a rock wi                           | ith a low pern | neability and n  | nakes a good            |                  |
| for a land | dfill site. |                                        |                |                  |                         |                  |

(b) **Figure 16** is a sketch cross-section through a reservoir and dam. Since its construction a lot of water has been lost through leakage from the reservoir.



Figure 16

| (i)  | State <b>two</b> geological factors that might have been the reason for building the d at this site. | am<br>[2] |
|------|------------------------------------------------------------------------------------------------------|-----------|
|      |                                                                                                      |           |
|      |                                                                                                      |           |
|      |                                                                                                      |           |
| (ii) | Explain why water is likely to leak out of the reservoir underneath the dam.                         | [2]       |
|      |                                                                                                      |           |
|      |                                                                                                      |           |

(c) Figure 17 is a cross-section showing the position of oil and gas traps (K, L and M).



not to scale

Figure 17

(i) Circle the name of the type of trap for those labelled **K** and **L**. [2]

K fault syncline unconformity salt dome anticline

L fault syncline unconformity salt dome anticline

(ii) From the following list, select the **two** most suitable techniques for detecting the structures (**K**, **L** and **M**) containing oil and gas in **Figure 17**. Tick (**/**) only **two** boxes. [2]

magnetic survey

seismic survey

geological mapping

geochemical survey

geotechnical survey

(d) Figure 18 is graph showing energy production and consumption in the United Kingdom in recent years.



Figure 18

| (i) | Give one year in which Britain has produced less energy than required. |  |  |  |  |  |  |
|-----|------------------------------------------------------------------------|--|--|--|--|--|--|
|     |                                                                        |  |  |  |  |  |  |
|     |                                                                        |  |  |  |  |  |  |
|     |                                                                        |  |  |  |  |  |  |

(ii) Give **one** year in which Britain has produced **more** energy than required. [1]



| (iii) | State w boxes.  | which of the following are <b>renewable</b> energy resources. Tick (✓) only <b>two</b> [2]                                    |    |
|-------|-----------------|-------------------------------------------------------------------------------------------------------------------------------|----|
|       |                 | gas                                                                                                                           |    |
|       |                 | geothermal                                                                                                                    |    |
|       |                 | oil                                                                                                                           |    |
|       |                 | wind                                                                                                                          |    |
|       |                 | nuclear                                                                                                                       |    |
| (iv)  | State w dioxide | hich of the following energy resources are not major sources of carbon in the atmosphere. Tick ( ) only <b>two</b> boxes. [2] |    |
|       |                 | hydroelectric                                                                                                                 |    |
|       |                 | coal                                                                                                                          |    |
|       |                 | oil                                                                                                                           |    |
|       |                 | nuclear                                                                                                                       |    |
|       |                 | gas                                                                                                                           |    |
| (v)   | Describ         | be <b>two</b> disadvantages of using nuclear power to generate electricity. [3]                                               |    |
|       |                 |                                                                                                                               |    |
|       |                 |                                                                                                                               |    |
|       |                 |                                                                                                                               |    |
|       |                 |                                                                                                                               | 23 |

# **Question 7**

|    | (i)           | Name th                 | e Period               | when fish first evolved                           | l.           |                                            | [1]         |
|----|---------------|-------------------------|------------------------|---------------------------------------------------|--------------|--------------------------------------------|-------------|
| (  | (ii)          | Name th                 | e oldest               | eriod in which all the                            | fossil verte | brates are present.                        | [1]         |
| (i | iii)          | Complet birds           | te the foll            |                                                   | the order o  | f vertebrate evolution.  amphibians        | [1]         |
|    | you           | ungest                  |                        | <ul><li>5</li><li>4</li><li>3</li><li>2</li></ul> |              |                                            |             |
|    | o             | ldest                   |                        | 1                                                 |              |                                            |             |
|    | iv)           |                         |                        |                                                   |              | s-Tertiary mass extinction.  million years | <br>[1]     |
| I  | Desc<br>was c | ribe the e<br>caused by | vidence t<br>a large n | nat suggests that the Ceteorite impact.           | Cretaceous-  | -Tertiary (K-T) extinction ev              | vent<br>[3] |



GCSE

**GEOLOGY DATA SHEET** 

A.M. FRIDAY, 20 May 2011

#### **Minerals**

| Name      | Hardness<br>(Mohs'<br>Scale)  | Typical<br>Colour     | Streak                    | Lustre              | Cleavage<br>(number of<br>directions) |
|-----------|-------------------------------|-----------------------|---------------------------|---------------------|---------------------------------------|
| Quartz    | 7                             | colourless or white   | scratches<br>streak plate | glassy              | none                                  |
| Feldspar  | 6                             | white                 | scratches<br>streak plate | pearly to<br>glassy | 2 good                                |
| Mica      | 21/2                          | silvery or<br>brown   | white                     | pearly to<br>glassy | 1 good                                |
| Halite    | 21/2                          | white                 | white                     | glassy              | 3 good                                |
| Calcite   | 3                             | white                 | white                     | glassy              | 3 good                                |
| Haematite | 5½                            | black or<br>red-brown | red-brown                 | metallic or<br>dull | none                                  |
| Galena    | 2 <sup>1</sup> / <sub>2</sub> | grey                  | grey                      | metallic            | 3 good                                |
| Garnet    | 7                             | red                   | white                     | glassy              | none                                  |

### Mohs' Scale of hardness

| Mineral/<br>hardness   |    | Common<br>equivalent |
|------------------------|----|----------------------|
| Diamond                | 10 |                      |
| Corundum               | 9  |                      |
| Topaz                  | 8  |                      |
| Quartz                 | 7  |                      |
| Orthoclase<br>feldspar | 6  | ← steel pin          |
| Apatite                | 5  |                      |
| Fluorite               | 4  |                      |
| Calcite                | 3  | ← copper coin        |
| Gypsum                 | 2  | ← finger nail        |
| Talc                   | 1  |                      |

### **Grain size scale**



# Grain shape and sphericity scale



# Geological ranges of vertebrates

