

 Centre Number			
Can	didat	e Nu	mber
Can	didat	e Nu	mber

General Certificate of Secondary Education 2019

Digital Technology

Unit 4

Digital Development Concepts

[GDG41]

GDG41

THURSDAY 16 MAY, AFTERNOON

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

You must answer the questions in the spaces provided.

Do not write outside the boxed area on each page or on blank pages.

Complete in black ink only. Do not write with a gel pen.

Answer all twelve questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 120.

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

Quality of written communication will be assessed in Question 6.

1 John needs a program to calculate his average score across four tests. For each test, he will enter the name of the test and the score. The table below shows the input data that he will use for the program.

Name Of Test	Score
Maths	23
English	17
History	19
Geography	15

(a) Complete the table below by writing the most appropriate data type for each of the data items listed in the table.

Data Item	Data Type
NameOfTest1	
Score	
Average	

[3]

93

a l earning

96)

93

93

)

E

P

DE g Learning

RANGE	VALIDATION	PRESENCE	
MANUE	VALIDATION	T NEGENGE	
is the	action of checking of	data to ensure it is accep	table.
A che	eck will be required to	o ensure that the value e	ntered
for the Score is valid. A	ch	neck will ensure that	
NameOfTest1 is actually enter	ered.		[3
INPUT NameOfTest1 INPUT Score1 INPUT NameOfTest2 INPUT Score2 INPUT NameOfTest3 INPUT Score3			
			[6

Rewarding L

)

Learning

DED Learning

Learning

Rewarding L

Rewarding L

Rewarding L.

Learning

GE Bewarding L

Rewarding L

Rewarding L

Learning
Rewarding L

E

12283

[Turn over

[3
[3
[2
·
ogram

g Learning

Rewardin

Rewarding
g Learning
Rewarding

Rewarding
g Learning
Rewarding
g Learning

Rewarding g Learning

Rewarding

Ballon

g Learning

Rewarding

g Learning

Rewarding

g Learning

Rewarding

g Learning

g Learning

Rewarding

Rewarding

g Learning

g Learning

Rewardin

g Learning

Rewarding g Learning

Rewarding

Parting

Rewarding

Rewarding

Parting

Rewarding

Rewarding

g Learning

Rewarding
g Learning
Rewarding

Rewarding

g Learning

Rewarding

g Learning

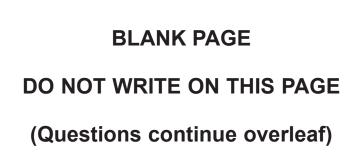
Rewarding

g Learning

Rewarding

g Learning

Œ.


Rewarding g Learning

g Learning

Rewarding

g Learning

[Turn over

Constants _____

93

93

		[7

Rewarding L

Rewarding L.

Rewarding L.

Rewarding L.

Rewarding L.

Rewarding L

Carring

Rewarding L

Carring

Rewarding L

Carring

Learning

Learning

Learning

Learning
Rewarding L

DED Learning

Rewarding L.

Learning

Rewarding L

Rewarding L

GE

Rewarding L

GE

Rewarding L

GE

Rewarding L

Learning

DED Learning

Rewarding L

Rewarding L.

Learning

Rewarding L.

E

3 Consider the following algorithm.

IF ((X>Y) or (Y<Z)) THEN
OUTPUT("Test case 1")
ELSEIF ((X<Y) and (Y>Z))
OUTPUT("Test case 2")
ELSE OUTPUT("Test case 3")

END IF

- (a) Which statement will be output when X=16, Y=20 and Z=10? Circle the correct letter.
 - A Test case 1
 - B Test case 2
 - C Test case 3 [1]

93

90

- **(b)** Which statement will be output when X=25, Y=11 and Z=10? Circle the correct letter.
 - A Test case 1
 - B Test case 2
 - C Test case 3 [1]
- (c) Which statement will be output when X=16, Y=20 and Z=20? Circle the correct letter.
 - A Test case 1
 - B Test case 2
 - C Test case 3 [1]

4	Complete the table below by inserting the correct program construct bes	side its
	definition. (Use each word only once.)	

SEQUENCE HERAHON SELECTION	EQUENCE	ITERATION	SELECTION
----------------------------	---------	-----------	-----------

Definition	Program Construct
Executing all lines of code in a program in order.	
Executing lines of code based on the outcome of an IF-Statement.	
Executing lines of code repeatedly.	

[3]

5	Programs often contain syntax errors and logic errors. Explain what syntax and logic
	errors are within a computer program.

Syntax errors	
	[2]
Logic errors	
	[2]

[Turn over

12283

Rewarding L.

Learning

Rewarding L

GE Rewarding L

Rewarding L

Rewarding L

6	Exp	lain the terms abstraction and decomposition as used in comp	utational thinking.
			[6]
7	In c	omputer systems, characters can be represented using ASCII	code.
	(a)	What do the letters ASCII stand for?	
			[1]
	(b)	Write True or False beside each of the following statements a representation in computer systems.	bout character
		Statement	True or False

g Learning

Bewardin

Rewarding

g Learning

Rewarding

Rewarding
g Learning
Rewarding
g Learning

Rewarding g Learning

Rewarding g Learning

Rewarding

g Learning

Revarding
g Learning
g Learning
g Learning
g Learning

Rewarding DED g Learning

Rewarding g Learning

g Learning
Rewarding
g Learning

Rewarding g Learning

Rewarding
g Learning

g Learning

Rewardin

g Learning

Œ.

Rewarding
g Learning
Rewardin

Rewarding
g Learning
Rewarding

Rewarding
g Learning
Rewarding
g Learning
g Learning

Rewarding

g Learning

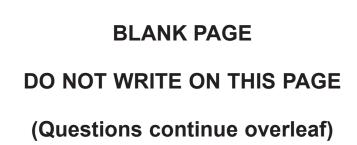
Rewarding

g Learning

Rewarding

G. Bewarding

Rewarding


G. Bewarding

G. Bewarding

G. Bewarding

Statement	True or False
The original ASCII code table used seven bits to represent each character.	[1]
There were 64 characters in the original ASCII code table.	[1]
Unicode was created to increase the number of characters that could be represented in a computer system.	[1]
Unicode incorporates the ASCII character set.	[1]

[Turn over

8	Coı	mputers make use of binary and hexadecimal numbering systems.
	(a)	Convert the denary number 21 to an 8 bit binary pattern. (Working out must be clearly shown)
		[2]
	(b)	Convert the denary number 31 to a hexadecimal code. (Working out must be clearly shown)
		[3]
	(c)	List one use for hexadecimal codes in a computer system.
		[1]
2283		

pl. corning

Powering

Rewarding g Learning

Rewarding

Description

g Learning

g Learning
Rewarding
g Learning
g Learning
Rewarding

Rewarding g Learning Rewarding DEJ g Learning Rewardin Hewardin, C S Rewardin DED g Learnin-Pewarding g Learning G. Hewarding DED g Learning Rewarding DED g Learning Rewarding g Learning G: Rewardin Berning g Learning

Rewarding

G. Rewarding

G. Rewarding

g. Learning

G:

(d) (i)	Using binary arithmetic add the following bytes together. In your answer circle where overflow occurs.

	10010011	and	11101111	
				[3]
(ii)	What is overflo	ow?		
				[2]
(iii)	How can overf	low affect th	ne result of a calculation?	
				[2]

(e) Complete the following truth table based on the input values P and Q.

Р	Q	R = P and Q	S = R or Q
0	0	0	0
0	1	[1]	[1]
1	0	[1]	[1]
1	1	1	1

[Turn over

12283

E Rewarding L

Rewarding L.

Learning

Rewarding L.

Learning

Rewarding L

Rewarding L

Learning

Bewarding L

Learning

Learning

Rewarding L

Rewarding L

E Rewarding L.

DED Learning

GE Bewarding L

Rewarding L Rewarding L Rewarding L

Learning

Brewarring

93)

- **9** FrameMagic is a company which supplies large wooden picture frames to customers.
 - The cost to the customer is calculated using the price of the frame and the number of each frame required.
 - The company gives a 5% discount to customers who buy 20 frames or more.

93

[2]

- Customers must buy at least 10 frames but they cannot buy more than 40 frames.
- Prices and sizes are shown in the table below:

Frame size	Price of frame
A1	£10.00
A2	£4.00
A3	£2.00

The company requires a program to help calculate customer bills.

(a) (i)	The program should be robust. How can the robustness of a program be tested?

(ii) Some data requirements for the program have been identified in the table below. Complete the table for the data items shown (one item in the table has been completed for you).

Data item	Data type	Sample valid data
frameSize	[1]	A1
numberOfFrames	[1]	[1]
discountDue	[1]	[1]

(b)		en Sally enters numberOfFrames for an order, the program outputs the owing error message:
		"The number of frames entered is invalid, please re-enter".
	(i)	Write an algorithm or code which will ensure that users enter a valid value for numberOfFrames.
		[8]

Rewarding L

Rewarding L

DED Learning

Learning

Rewarding L

Rewarding L

Rewarding L.

Learning

GE Bewarding L

Rewarding L

Learning Learning Learning L

Hewarding DED

Rewarding L

Rewarding L.

Learning

Rewarding L.

E

12283

[Turn over

(ii) Below is a section of the test plan which the software developer has created to test the validation for numberOfFrames. Complete the test plan.

93

a l earning

)

93

93

)

93

93

93

DE g Learning

Test number	Item to be tested	Reason for test	Test data	Expected outcome
1.	numberOfFrames	Extreme value	10	[1]
2.	numberOfFrames	[1]	39	Value accepted
3.	numberOfFrames	[1]	45	[1]
4.	numberOfFrames	NULL data	[1]	[1]

(c) The program can calculate the discount due on each order. Complete the algorithm below so that it will correctly calculate the total cost for Sally's order.

cost =	* priceOfFrame	[1]
IF numberOfFrames	THEN	[2]
discountDue=	* 0.05	[1]
END IF		
totalCost = cost		[1]

10	(a)	(i)	Black box testing.	
		(•)		
				[2]
		(ii)	White box testing.	
				-
	(b)		he table below tick (🗸) the two statements which are correct about to	Tick
	(b)	St		esting.
	(b)	St Sy de	atement vistem testing is carried out as the individual components are being	esting.
	(b)	St Sy de Sy ha	atement vistem testing is carried out as the individual components are being eveloped. vistem testing is carried out when all the individual components	esting.
	(b)	Sy de Sy ha	atement stem testing is carried out as the individual components are being eveloped. stem testing is carried out when all the individual components are been developed. segration testing is used to ensure that all units of code are working	esting.
	(b)	Sy de Sy ha	atement ystem testing is carried out as the individual components are being eveloped. ystem testing is carried out when all the individual components even developed. tegration testing is used to ensure that all units of code are working gether as expected. tegration testing is used to ensure that each individual unit of code	esting.
	(b)	Sy de Sy ha	atement ystem testing is carried out as the individual components are being eveloped. ystem testing is carried out when all the individual components even developed. tegration testing is used to ensure that all units of code are working gether as expected. tegration testing is used to ensure that each individual unit of code	Tick

Rewarding L.
Rewarding L.
Rewarding L.
Rewarding L.
Rewarding L.
Rewarding L.

Rewarding L

DED Learning

Learning

Rewarding L

Rewarding L

Rewarding L.

Learning

GE Bewarding L

Rewarding L

Learning Learning Learning L

Rewarding

Rewarding L

Rewarding L.

Learning

Rewarding L.

E

12283

[Turn over

(a) Li	List two aims of the evaluation process.			
	1.				
	2.		_ [2]		
(b) ld	entify two individuals who should be involved in the evaluation process.			
	1.				
	2.		_ [2]		
(0	:) E	xplain how each of the following can help in the evaluation process:			
	(i)	User requirements			
			[2]		
	(ii) Testing outcomes			
			[2]		
	(ii	i) Design documents			
			[2]		

g Learning

Rewardin

Rewarding
g Learning
Rewarding

Rewarding
g Learning
Rewarding
g Learning

Rewarding g Learning

Rewarding

Ballon

g Learning

Rewarding

g Learning

Rewarding

1 Carring

1 Carring

1 Carring

1 Carring

1 Carring

g Learning

g Learning

Rewarding

Rewarding

g Learning

g Learning

Rewardin

g Learning

Rewarding g Learning

Rewarding g Learning

Rewarding

90

9 Learning

g Learning

Rewarding
g Learning
Rewarding

Rewarding

g Learning

Rewarding

g Learning

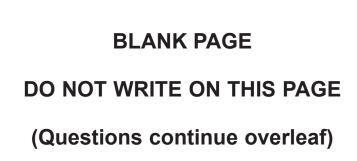
Rewarding

g Learning

Rewarding

g Learning

Œ.


Rewarding DED g Learning

g Learning

Rewarding

g Learning

[Turn over

12	Sorting and	searching are	important techniq	lues used to r	process data.
	00.0.90.0.			10.00 0.000 10 1	

(a) Complete the table below by circling the search technique described in the definition.

Definition	Search Technique	
A search technique which requires a sorted	Linear Search / Binary Search	
list of items.	[1]	
A search technique which examines every	Linear Search / Binary Search	
item in a list until the required item is found.	[1]	

g Learning

GG

Rewardin

)

93

Rewarding

g Learning

Rewarding

93

96)

PE

93

g Learning
Rewarding
g Learning
G G
Rewarding

)

96)

93

)

93

g Learning

Rewarding g Learning

g Learning

____ [2]

(b) (i) Explain why a binary search is considered to be more efficient when searching large volumes of data.

(ii)	Using the Bubble Sort, demonstrate how the data in the array ClassroomTemperatures would be organised from smallest to largest during the sorting process. Show clearly the array content after each pass.					
	ClassroomTem	peratures				
	22	18	23	17	20	
	Pass 1					
	Pass 2					
	Pass 3					
	Pass 4					
					[4]	

THIS IS THE END OF THE QUESTION PAPER

g Learning

Rewarding

g Learning

Generaling

Rewarding

g Learnina

Pewarding
g Learning
g Learning
g Learning
g Learning
g Learning
g Learning

g Learning

Rewarding

Rewarding g Learning

Revarding

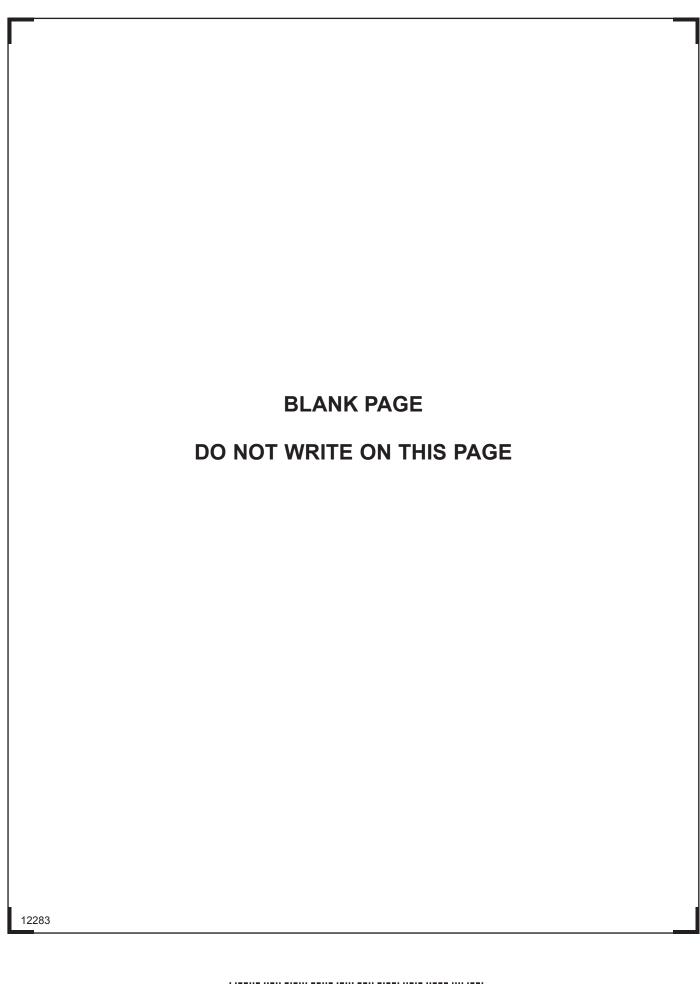
Q Learning

Revarding

g Learning

Rewarding

Rewarding


g Learning

Rewarding g Learning

Rewarding
g Learning
Rewardin

.earning

DO NOT WRITE ON THIS PAGE

For Examiner's use only		
Question Number	Marks	
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		

g Learning

Rewardin,

g Learning

)

g Learning

20

20

93

PE

)

g Learning

9 Learning

93

newarding

Description

g Learning

DE P

P

g Learning

g Learning

g Learning

Total Marks

Examiner Number

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

