

 Specimen NEA task 3 specimen solution v1.0

NEA sample solution
Task 3 – Card trick
GCSE Computer Science 8520
NEA (8520/CA/CB/CC/CD/CE)

2

 Specimen NEA task 3 specimen solution v1.0

Introduction

The attached NEA sample scenario solution is provided to give teachers an indication of the type of
solution that students could complete in response to the specimen material NEA scenario: Task 3 –
Card trick for the new GCSE Computer Science (8520) specification. This specification is for first
teaching from September 2016.

This sample solution should only be used to enable teachers to commence planning work for the
NEA, (the live NEA scenario will be available for the first time from September 2017). As a result
teachers should use this only as a guide to the forthcoming live scenarios. This solution is not a
‘real’ solution and is provided as an example only. It cannot be used to accurately determine
standards in the future.

At our preparing to teach events, spring 2016, the sample scenarios and solutions will be considered
and discussed. After these events, appropriate commentaries will be provided, by the senior
examining team, to enable teachers to understand the appropriate level achieved by this solution.

Teacher Standardisation events will be used to prepare teachers for the first NEA assessment,
which will be available in centres from September 2017. At these meetings teachers will be made
aware of the standard.

3

Specimen NEA task 3 specimen solution v1.0
 Turn over 

AQA NEA Card Trick
Designing the Solution
The top-level design is shown here:

The interface for this design is:

• Subroutine do_trick
o inputs: none
o output: none
o purpose: top-level subroutine, contains everything to complete the card trick

• Subroutine get_cards
o inputs: none
o output: cards (list of strings)
o purpose: creates a list of strings representing 21 playing cards and then shuffles

these cards
• Subroutine get_chosen_card

o inputs: cards (list of strings)
o output: chosen card (string)
o purpose: performs the three deals of the cards, for each one getting the user choice.

• Subroutine deal_into_piles
o inputs: cards (list of strings)
o output: list of three piles of cards (list of list of strings)
o purpose: takes the whole deck of cards and deals it into the three piles working left

to right and top to bottom
• Subroutine display_cards

o inputs: three piles of cards (three lists of strings)
o output: none
o purpose: outputs the cards so that they appear to be in three distinct piles

do trick

get cards get chosen
card

deal into
piles (x3)

display
cards (x3)

get choice
(x3)

4

Specimen NEA task 3 specimen solution v1.0

• Subroutine get_choice
o inputs: the number of options the user can choose (integer)
o output: the user’s choice (integer)
o purpose: gets the user choice of 1, 2 or 3 validating that the user has entered an

integer in this range

The subroutines will do the following:

do_trick()
1. cards ← get_cards
2. card ← get_chosen_card(cards)
3. output card

get_cards()

1. cards ← [‘H A’, ‘H 2’, ‘H 3’, etc for 21 different playing cards]
2. shuffle cards
3. RETURN cards

get_chosen_card(cards)

1. REPEAT 3 times…
a. [pile1, pile2, pile3] ← deal_into_piles(cards)
b. display_cards(pile1, pile2, pile3)
c. pile_choice ← get_choice(3)
d. if choice = 1 then cards ← pile2 + pile1 + pile3
e. if choice = 2 then cards ← pile1 + pile2 + pile3
f. if choice = 3 then cards ← pile1 + pile3 + pile2

2. RETURN the middle card in cards

deal_into_piles(cards)

1. create three empty lists called pile1, pile2 and pile3
2. FOR i ← 0 to length(cards)…

a. if i MOD 3 = 0 then append cards[i] to pile1
b. if i MOD 3 = 1 then append cards[i] to pile2
c. if i MOD 3 = 2 then append cards[i] to pile3

3. RETURN [pile1, pile2, pile3]

display_cards(pile1, pile2, pile3)

1. FOR i ← 0 to length(any of the piles)…
a. print pile1[i] SPACE pile2[i] SPACE pile3[i]

get_choice(options)

1. WHILE true…
a. choice ← INPUT
b. if choice is an integer and >=1 and <=options then RETURN choice

5

Specimen NEA task 3 specimen solution v1.0
 Turn over 

Creating the Solution
import random

main subroutine of the program
def do_trick():
 # get 21 random cards
 cards = get_cards()
 # find the chosen card
 card = get_chosen_card(cards)
 print("your card is...")
 # display the chosen card
 print(card)

subroutine that takes the 21 shuffled cards as input and
returns the chosen card
def get_chosen_card(cards):
 print("choose a card and remember it...")
 # the cards are dealt three times and so a for loop
 # performs the dealing and selection 3 times
 for x in range(3):
 pile1, pile2, pile3 = deal_into_piles(cards)
 print("which pile is your card in...")
 # call to the display_cards subroutine with the three piles as input
 display_cards(pile1, pile2, pile3)
 # the user choice is validated using the get_choice subroutine
 pile_choice = get_choice(3)
 # depending on the user choice the piles are concatenated in different
orders
 if pile_choice == 1:
 cards = pile2 + pile1 + pile3
 elif pile_choice == 2:
 cards = pile1 + pile2 + pile3
 else:
 cards = pile1 + pile3 + pile2
 # the chosen card is at the midpoint so integer division is used
 card_index = len(cards) // 2
 # the chosen card is returned
 return cards[card_index]

subroutine to shuffle and return a deck of 21 cards
def get_cards():
 # the cards are stored as an array of strings
 cards = ["H A", "H 2", "H 3", "H 4", "H 5", "H 6", "H 7",
 "S A", "S 2", "S 3", "S 4", "S 5", "S 6", "S 7",
 "D A", "D 2", "D 3", "D 4", "D 5", "D 6", "D 7"]
 # the deck is shuffled and then returned
 random.shuffle(cards)
 return cards

subroutine to deal cards into three piles
def deal_into_piles(cards):
 # three empty piles are intiated for every iteration
 pile1 = []
 pile2 = []
 pile3 = []
 # iterates over the whole deck using the indices of the
 # the elements (cards)
 for index in range(len(cards)):
 # if the index MOD 3 is 0 then the card is appended to the first pile
 if index%3 == 0:

6

Specimen NEA task 3 specimen solution v1.0

 pile1.append(cards[index])
 # if the index MOD 3 is 1 then the card is appended to the second pile
 elif index%3 == 1:
 pile2.append(cards[index])
 # otherwise the card is appended to the third pile
 else:
 pile3.append(cards[index])
 return [pile1, pile2, pile3]

subroutine to display three piles of cards
def display_cards(pile1, pile2, pile3):
 print("Pile1\t\tPile2\t\tPile3")
 # x is an index that is used to index the particular card
 # in piles 1, 2 and 3 that should be displayed - this makes
 # it easier for the user to 'see' the three piles
 for x in range(len(pile1)):
 print(pile1[x], end="\t\t")
 print(pile2[x], end="\t\t")
 print(pile3[x])
 print()

validates user choice
def get_choice(options):
 # only returns when the user enters an integer that
 # is between 1 and the options given as input to the subroutine,
 # until then it loops
 while True:
 print("choose option 1 to", options)
 try:
 choice = int(input(">>>"))
 # range check performed on the integer
 if choice >= 1 and choice <= options:
 # if it passes the type and range check then it is returned
 return choice
 else:
 print("invalid range")
 # exception caught if the user does not enter a value that
 # can be converted to an integer
 except:
 print("not a number")

calls the main subroutine
do_trick()

7

Specimen NEA task 3 specimen solution v1.0
 Turn over 

Testing the Solution

Test Purpose Input/Action Expected Result Actual Result
1 Check that the

cards display
correctly

Run the program Inspect the
program (using
watches) to check
that the three piles
are displayed
correctly

The internal lists of
pile1, pile2 and
pile3 are displayed
correctly

2 The list of 21 cards
is randomised at
the start of the
game

Run the program
three times

Check that the
order of the cards
is different

Cards are
obviously in a
different order
each time

3 Check that the
program deals the
cards into three
piles

Run the program Inspect the
program (using
watches) to
compare the initial
list of cards to the
three piles and
check that the first,
second and final
third match the
three piles

The initial list of
cards matches the
piles

4.1 Check user input
(correct range)

User enters 4
(erroneous,
boundary)

Not accepted and
user prompted
again

Not accepted and
prompted again

 User enters 0
(erroneous,
boundary)

Not accepted and
user prompted
again

Not accepted and
prompted again

 User enters 1
(correct, boundary)

Accepted Accepted

 User enters 3
(correct, boundary)

Accepted Accepted

4.2 Check user input
(type check)

User enters ‘a’ Not accepted and
user prompted
again

Not accepted and
prompted again

4.3 Check user input
(presence check)

User enters
nothing

Not accepted and
user prompted
again

Not accepted and
prompted again

5 Cards rearranged
correctly according
to user choice of
pile

User enters 1 Check that the
cards in pile 1 are
in the middle third
of the new list of
cards

They are

 User enters 2 Check that the
cards in pile 1 are
in the middle third
of the new list of
cards

They are

 User enters 3 Check that the
cards in pile 1 are
in the middle third
of the new list of
cards

They are

8

Specimen NEA task 3 specimen solution v1.0

Test Purpose Input/Action Expected Result Actual Result
6 Check overall

correctness
Run the program
three times, each
time selecting the
Ace of Spades

For each game,
the program will
ask for user input
three times and
then output the
chosen card is the
Ace of Spades

Every time works
correctly

Test
Number

Evidence

1 This is the values of the three piles:

And this is the matching output to the user:

9

Specimen NEA task 3 specimen solution v1.0
 Turn over 

2 All three runs show the cards in different order.
First run:

Second run:

Third run:

10

Specimen NEA task 3 specimen solution v1.0

3

It’s clear that the first element of cards is the first element of pile1, the second
element of cards is the first element of pile2, the third element of cards is the
first element of pile3 and so on.

4 All of the erroneous data is shown here (each one is not accepted):

These are the two boundary cases that are accepted:

11

Specimen NEA task 3 specimen solution v1.0
 Turn over 

5 By looking carefully at the rearrangement of the cards it is clear that the

rearrangement and dealing works.

When the user enters 1:

When the user enters 2:

12

Specimen NEA task 3 specimen solution v1.0

When the user enters 3:

6 These three final outputs from the message are when the user enters the pile

numbers for the Ace of Spades. All three output the correct card.
Trick 1:

Trick 2:

Trick 3:

13

 Specimen NEA task 3 specimen solution v1.0

Potential Enhancements and Refinements
The program displays 21 shuffled cards at the start of the program. This uses the in-built shuffle
function from the random module in Python. I could have implemented a randomising algorithm
myself but it is highly unlikely it will be more effective or efficient than the built-in version.

I use modulo arithmetic to take the list of 21 cards and divide them equally into three piles. This is
an efficient solution as it only requires me to iterate over the list of cards once. This is a much more
elegant solution than creating three piles from, for example, cards[0], cards[3], cards[6], etc.

I have created a subroutine that validates the user input. This loops until the user has entered an
integer that is either 1, 2 or 3. I use try and except to catch if a user has entered a non-integer value
(a run-time error occurs when the input string is converted to an integer unless that string can be
obviously converted).

I use list concatenation to produce a new list comprising the three different piles. I use IF, ELIF and
ELSE here as there are only three possible branches that can be taken.

My program repeats the core functions three times before it uses integer division to find the mid-
point of the list of cards and displays that card to the user.

I could enhance my program by asking the user how many cards they would like to use. This needs
to be an odd numbered multiple of 3 (e.g. 3, 9, 15, 21, 27, 33, 39, 45 or 51). I would need to change
the number of iterations for some of these from 3 to 1, 2 or 4. I would also have to change the user
choice to reflect this (my subroutine is already set up to do this).

	GCSE Computer Science 8520
	NEA (8520/CA/CB/CC/CD/CE)
	Introduction
	At our preparing to teach events, spring 2016, the sample scenarios and solutions will be considered and discussed. After these events, appropriate commentaries will be provided, by the senior examining team, to enable teachers to understand the appro...
	Teacher Standardisation events will be used to prepare teachers for the first NEA assessment, which will be available in centres from September 2017. At these meetings teachers will be made aware of the standard.
	Designing the Solution
	do_trick()
	get_cards()
	get_chosen_card(cards)
	deal_into_piles(cards)
	display_cards(pile1, pile2, pile3)
	get_choice(options)

	Creating the Solution
	Testing the Solution
	Potential Enhancements and Refinements

