

 Specimen NEA task 2 specimen solution v1.0
 Turn over 

NEA sample solution
Task 2 – Cows and bulls (solution 1)
GCSE Computer Science 8520
NEA (8520/CA/CB/CC/CD/CE)

2

 Specimen NEA task 2 specimen solution v1.0
 Turn over 

Introduction

The attached NEA sample scenario solution is provided to give teachers an indication of the type of
solution that students could complete in response to the specimen material NEA scenario: Task 2 –
Cows and Bulls for the new GCSE Computer Science (8520) specification. This specification is for
first teaching from September 2016.

This sample solution should only be used to enable teachers to commence planning work for the
NEA, (the live NEA scenario will be available for the first time from September 2017). As a result
teachers should use this only as a guide to the forthcoming live scenarios. This solution is not a
‘real’ solution and is provided as an example only. It cannot be used to accurately determine
standards in the future.

At our preparing to teach events, spring 2016, the sample scenarios and solutions will be considered
and discussed. After these events, appropriate commentaries will be provided, by the senior
examining team, to enable teachers to understand the appropriate level achieved by this solution.

Teacher Standardisation events will be used to prepare teachers for the first NEA assessment,
which will be available in centres from September 2017. At these meetings teachers will be made
aware of the standard.
.

3

Specimen NEA task 2 specimen solution v1.0
 Turn over 

Contents
Designing the solution ... 3

Creating the solution ... 9

Testing the solution ... 13

Test planning ... 13

Testing evidence ... 15

Potential enhancements and refinements.. 24

Appendix – Complete code listing. .. 25

Designing the solution
The program is a game of Cows and Bulls. The aim of the game is to guess a 4 digit number that
has been randomly generated. To help guessing the player will get hints to say what numbers are
correct and in the right place (bulls) or correct but in the wrong place (cows).

The program will be created using python programming language and using the IDLE IDE.

The first part of the program needs to generate a number and make sure the 4 numbers are not
repeated. The python random module should be imported into the program, in order to generate a
random number. The generated number will be the format of a python list of 4 digits, so that the
values can be looped through.

The python function randrange() can be used to generate a single number between 0 and 9, as
required in the scenario. A loop is needed to do this 4 times and check that the number is not
duplicated, by comparing each new number to those generated in previous iterations of the loop.
See Flow Chart 2.

The program needs to allow the player to enter a guess and continue doing this until the generated
number is guessed or they type exit. See Flow Chart 1.

The user entered number needs to be validated to ensure it is a four digit number without duplicates.
A loop is needed to check each digit in the number and ensure it is not used twice or more. See
Flow Chart 3.

The user entered number needs to be compared to the random generated number. To do this each
digit in the user number is compared to the digit in the same position in the random number. If they
are equal then 1 will be added to the bulls counter. If the user digit is not in the same position but is
in the random number anyway then 1 is added to the cows counter. See Flow Chart 4.

4

 Specimen NEA task 2 specimen solution v1.0

The data variables needed in the program are defined below:

Data Variable Name Data Type Purpose

GeneratedNumber[] List Used to hold the 4 digit generated number that is
to be guessed by the player.

UserNumber[] List
Used to hold the number input by the player. This
will be compared digit by digit to the generated
number.

Bulls Integer Holds a count of the number of bulls (a correct
digit in the correct position).

Cows Integer Holds a count of the number of cows (a correct
number in the wrong position).

NoOfGuesses Integer Holds the count of the number of guesses that the
player has made.

Valid Boolean A flag that is set to true if the UserNumber is valid,
or false if it is invalid.

5

Specimen NEA task 2 specimen solution v1.0
 Turn over 

Flow Chart 1 – Main Process

Start

User input =
Exit?

Is the User
Number valid?

Validate User
Number
Page 4

Generate
Random Number

Page 3

Compare
Random and User

Numbers
Page 5

Is the Number
Guessed?

End

Yes

No

Yes

Yes

No

No

User input

6

 Specimen NEA task 2 specimen solution v1.0

Flow Chart 2 – Generate Random Number

Begin

Is digit already
used?

Have 4 digits
been generated?

Return

Yes

No

Yes

No

Generate a random digit
between 0 and 9

Append digit to
generated number

7

Specimen NEA task 2 specimen solution v1.0
 Turn over 

Flow Chart 3 – Validate User Number

Begin

Is user number 4
digits long?

Is digit unique?

Yes

No

Yes

No

Check each digit in user
number

Valid
Flag = False

Valid
Flag = True

Have all digits
been checked?

No

Yes

Return

8

 Specimen NEA task 2 specimen solution v1.0

Flow Chart 4 – Compare Random and User Numbers

Begin

Is user digit in
correct position in
random number?

Yes

No

Yes

No

Cows = 0
Bulls = 0

Bulls +=1

Cows +=1

Is user digit in
random number?

No

Yes

Return

Compare random
digit and user digit

Have all user digits
been checked?

9

Specimen NEA task 2 specimen solution v1.0
 Turn over 

Creating the solution
The code starts with the main program. I have added comments in the program to explain the
processing. I have a main loop that continues until the user wants to exit by typing Exit. Inside that
loop a user input is validated and checked by calling other functions.

10

 Specimen NEA task 2 specimen solution v1.0

Before the main loop there is a call to a function called generate_number(). This function returns a
list data structure to the main program and is saved in the variable gen_number.

This function uses the python count method to count the occurrence of a value in a list and the
append method to add a value to a list. It also used the random.randrange function, which required
a python library to be imported.

The main program then checks that a user entered number is valid by calling a function called
validate_number. This function is passed the user_input and returns a Boolean value indicating if
the user input has passed the validation and so can be checked against the randomly generated
number gen_number. A loop is used to look at each digit in the user input.

The user_input variable has been passed by the main program. It was manually entered using the
raw_input() function. Originally I used the input() function but python creates a variable that takes
the form of the data entered when this function is used. Therefore the user_input would be created
as an integer if a 4 digit number is entered, but this is no use for this program as a string is better
because it can be used as a list and looped through. I originally used this and got an error, so
changed to use raw_input() function that always returns a string.

11

Specimen NEA task 2 specimen solution v1.0
 Turn over 

The final part of the main program calls the function check_guess. This function is passed the
user_input and gen_number variables. Because these two parameters can be interpreted as lists
they will be compared item by item in order to determine if the match makes a bull or a cow.

The check_guess procedure returns True if there are 4 bulls, meaning the number has been
guessed correctly, or False if it hasn’t. A count of the number of guesses is kept in the main
program.

The main program finally ends when exit has been entered by the user OR the number has been
guessed correctly.

There is a full code listing in the appendix.

12

 Specimen NEA task 2 specimen solution v1.0

13

 Specimen NEA task 2 specimen solution v1.0
 Turn over 

Testing the solution

Test planning

Description of Test Test Data Expected Results Actual Results
The instructions are displayed
and a prompt is shown for the
user.

None Instructions displayed and prompt
allows keyboard entry.

As expected - Figure 1

A random 4 digit number is
generated without duplicates

None A test print output shows that a valid
random number is generated.

Number [2, 3, 0, 8] has been generated
and will be used for further tests. See
Figure 1

Test that valid data is entered in
the user prompt

1234 The number is accepted and checked
against the random number. A count
of cows and bulls is shown.

Error found, Figure 2a. The user
entered number gave an error that the
user_entry was an integer and had no
length value.
Retested, As expected – Figure 2b.
Using the results from test 2 a count of
2 cows and 0 bulls is shown.

Test that erroneous data is
entered, 4 non-digits

abcd An error message is output stating
that invalid data has been entered.

As expected – Figure 3.

Test that boundary data is
entered, more than 4 digits

12345 An error message is output stating
that the number is the wrong length

As expected – Figure 3.

Test that boundary data is
entered, less than 4 digits

123 An error message is output stating
that the number is the wrong length

As expected – Figure 3.

Test that erroneous data is
entered, duplicate digits

1123 An error message is output stating
that the number has duplicates.

As Expected – Figure 3.

14

 Specimen NEA task 2 specimen solution v1.0

Description of Test Test Data Expected Results Actual Results
Test that the number entered has
correct number of bulls and cows.

Based on random
generated
number

A message is output stating correct
number of cows and bulls.

As expected – Figure 4.

Test that the number entered
matches the random number and
number of guesses is correct.

Based on random
generated
number

A message is output stating 4 bulls
and congratulations.

As expected – Figure 5.

Exit typed before any guesses
made.

Exit Program exits with message output. Program did not exit but gave an
invalid format error – Figure 6a.
Input case sensitive, so code corrected
to use lower() python format function.
Retested As Expected Figure 6b

Additional test to ensure program
working with errors fixed.

None Program accepted incorrect input with
error messages, and correct guesses.

Figure 7.

15

Specimen NEA task 2 specimen solution v1.0
 Turn over 

Testing evidence
Figure 1.

The line [2, 3, 0, 8] shows the randomly generated number.

16

 Specimen NEA task 2 specimen solution v1.0

Figure 2a.

17

Specimen NEA task 2 specimen solution v1.0
 Turn over 

This was a problem because I had used the function input() for the user input. I changed the code to use raw_input() and it worked.

Figure 2b.

Fixed code

18

 Specimen NEA task 2 specimen solution v1.0

Figure 3.

19

Specimen NEA task 2 specimen solution v1.0
 Turn over 

Figure 4.

20

 Specimen NEA task 2 specimen solution v1.0

Figure 5

21

Specimen NEA task 2 specimen solution v1.0
 Turn over 

Figure 6a

22

 Specimen NEA task 2 specimen solution v1.0

Figure 6b.

Corrected code

23

Specimen NEA task 2 specimen solution v1.0
 Turn over 

Figure 7.

24

 NEA task 2 specimen solution v1.0

Potential enhancements and refinements
The solution meets user requirements, allowing the user to play the game and guess the random
number correctly. The user input has been validated to ensure that the solution is robust. The
validation includes the use of a try: catch when checking the format of the data input. This prevents
the program from crashing if the input is not a number, so the user has an opportunity to re-enter the
number, rather than restarting the program.

The code has comments that explain the functions and is structured logically, so making an efficient
solution that can be easily maintained.

The main problem encountered was how the user input was handled and there are some
alternatives that can be considered. In my solution I originally used the input() function. When I
tested the solution this caused a problem when validating the input.

The python function input() reads the keyboard input and makes a decision on how to format the
data based on what the user has typed. For example if the user types in a number such as 1234
then input() will set the data variable to an integer (so in this case user_input is an integer if 1234 is
entered).

The advantage of using input() is that python makes a decision without needing code to test if the
number is an integer or a string. Code is shorter and less complex. When comparing the randomly
generated number in my example the code will be comparing “like with like”, as the random number
returns an integer. This could have performance benefits as there is no need for extra instructions to
the processor to convert data types.

This would be fine if I was comparing the random and user input numbers as a whole. However I
needed to compare them digit by digit and an integer data type does not allow this. There are a few
ways to do this in python but all involve converting the user input into a string and then mapping into
a list. This would make the code more complex and less efficient as data would have to be
evaluated twice and potentially converted twice.

Therefore I used the raw_input function that always assumes a string input. This could then be
tested once to see if it was an integer, for validation. It could then be compared digit by digit to the
randomly generated number that had been formatted as a list originally.

An Improvement to the functionality of the solution could be considered. For example it could be
possible to save a game half way through, so that the user could resume guessing the number.
This would require a way of saving the random number and number of guesses into some data
store.

A history of games could also be created, and a way of entering user names and playing against
another user, to compare guesses.

This was not required as part of this solution however.

25

 NEA task 2 specimen solution v1.0
 Turn over 

Appendix – Complete code listing.
#-------------------------#
AQA Cows and Bulls Game #
Written in Python 3.3 #
January 2016 #
Candidate: Harry Potter #
Centre: Hogwarts #
Centre No: 000000 #
Candidate No: 9999 #
#-------------------------#
#import libraries
import random #imports random for random number

#Function to generate a random 4 digit number
def generate_number():
 #Creates a list to be used to guess the number
 #loop to generate 4 numbers. Continues until all numbers are unique
 gen_number = []
 i = 0
 while i <=3:
 random_value = random.randrange(0, 9)
 #IF statement to check that the number has not been used before
 if gen_number.count(random_value) == 0:
 gen_number.append(random_value)
 i+=1
 return gen_number

def validate_number(user_input):
 #validation to check that the user entry is a number and 4 digits in length
 #the user_input is also checked for duplicate numbers. If validation fails then
 # the function returns False.
 test_input = ""

 #try to convert the user input to an integer. If there are characters
 #in the input then a value error is returned.
 try:
 test_input = int(user_input)
 except ValueError:
 print("you must enter a number")
 return False

 #the length of the number must be 4 digits long. The format of the input
 #has already been checked so it is a number
 try:
 if len(user_input) != 4:
 print("your number should be exactly 4 digits long")
 return False
 i = 0
 while i <=3:
 #IF statement to check that the digit has not been used before
 #loop through each digit in the input string and count the number
 #of times it occurs which should only be once, otherwise it is a
 #duplicate
 if user_input.count(user_input[i]) != 1:
 print("your number contains duplicates")
 return False
 i+=1
 # end loop

26

 Specimen NEA task 2 specimen solution v1.0

 return True

def check_guess(user_input, gen_number):
 # initialise all the variables to count bulls and cows
 i = 0
 bulls = 0
 cows = 0

 #a loop that looks at each digit in the user input and compares it to the generated
 #number.

 while i <=3:
 #if the input digit is the same as the generated digit in the same position
 #then it is a bull

 if gen_number[i] == int(user_input[i]):
 bulls = bulls + 1

 #if the digit is in the generated number but in a different position
 #then it is a cow
 elif int(user_input[i]) in gen_number:
 cows = cows + 1
 i += 1
 # end of loop

 print ("You have " + str(bulls) + " bulls and " + str(cows) + " cows")

 #If there are 4 bulls then True is returned to the main program
 #so that a congratulations message can be printed
 if bulls == 4:
 return True
 else:
 return False

#-------------------------#
Main program #
#-------------------------#

#Introduction to the game
print("***")
print("* Welcome to the AQA Bulls and Cows program. *")
print("* A random 4 digit number has been generated. *")
print("* A number will not be repeated in the 4 digits *")
print("* Please enter your first guess at the number. *")
print("* You will be told how many numbers were right *")
print("* A bull = both number and position is correct *")
print("* A cow = correct number but wrong position *")
print("***")
print("")

#calling the function that generates the number
gen_number = generate_number()
print(gen_number) # Just for testing. Comment this line out when playing for real

#sets a data variable for user input
user_input = ""
#an integer is created to keep count of the number of guesses
guesses = 0

27

 NEA task 2 specimen solution v1.0

#loop that allows a number to be entered until the program is exited
#or the number is guessed
while user_input != "exit":
 print("Please enter a 4 digit number or exit")
 user_input = input("number: ").lower()

 #breaks the loop if exit is entered, the game ends
 if user_input == "exit":
 break

 #checks to see if the number has been guessed correctly
 #the validation function also checks that a valid number has
 #been enterd
 if validate_number(user_input) is True:
 guesses += 1
 if check_guess(user_input, gen_number) is True:
 print ("Congratulations you have guessed the number in " + str(guesses) + "
guesses")
 break

#end of while loop

print ("goodbye")

	GCSE Computer Science 8520
	NEA (8520/CA/CB/CC/CD/CE)
	Introduction
	At our preparing to teach events, spring 2016, the sample scenarios and solutions will be considered and discussed. After these events, appropriate commentaries will be provided, by the senior examining team, to enable teachers to understand the appro...
	Teacher Standardisation events will be used to prepare teachers for the first NEA assessment, which will be available in centres from September 2017. At these meetings teachers will be made aware of the standard.
	Designing the solution
	Creating the solution
	Testing the solution
	Test planning
	Testing evidence

	Potential enhancements and refinements
	Appendix – Complete code listing.

