

 Specimen paper 1 v1.0 8520/1

SPECIMEN MATERIAL

GCSE
COMPUTER SCIENCE
8520/1
Paper 1

Specimen 2015 am/pm Time allowed: 1hr 30mins

Materials
There are no additional materials required for this paper.

Instructions
• Use black ink or black ball point pen. Use pencil only for drawing.
• Answer all questions.
• You must answer the questions in the spaces provided.
• Some questions will require you to shade a lozenge. If you make a mistake cross through the

incorrect answer.
• Do all rough work in this book. Cross through any work that you do not want to be marked.
• You are free to answer questions that require a coded solution in whatever format you prefer as long

as your meaning is clear and unambiguous.
• You must not use a calculator.

Information
• The marks for questions are shown in brackets.
• The maximum mark for this paper is 80.
• You are reminded of the need for good English and clear presentation in your answers.

Please write clearly, in block capitals, to allow character computer recognition.

Centre number Candidate number

Surname

Forename(s)

Candidate signature

2

 Specimen paper 1 v1.0

Answer all questions in the space provided.

0 1 Two computer programs that add together two numbers are shown in Figure 1.

One is written in a high-level language and the other is written in a low-level
language.

Figure 1

High-level program Low-level program

x = 12
y = 3
z = x + y

0001 1100
0010 0001
0001 0011
0010 0010
0011 0001
0010 0011

0 1 . 1 Shade two lozenges to give the reasons why computer programs are most

commonly written in high-level languages instead of low-level languages.
 [2 marks]

 A It saves the programmer time.
 B The programs will always run faster.
 C Program code written in high-level language is often easier for

 humans to understand.
 D Computers understand only high-level languages.
 E The programs are often easier for a computer to decode.

0 1 . 2 The low-level program shown in Figure 1 is written in machine code.

Suggest two reasons why it would have been better for the programmer to use
assembly language instead of machine code.

 [2 marks]

Reason 1

Reason 2

4

3

Specimen paper 1 v1.0 Turn over 

0 2 Figure 2 contains a subroutine that returns a value.

Figure 2

SUBROUTINE TotalOut(a, b)
 c ← a + b
 WHILE a < c
 a ← a + 1
 b ← b – a
 ENDWHILE
 RETURN b
ENDSUBROUTINE

0 2 . 1 Complete the trace table below when the subroutine call TotalOut(3, 4) is made

(you may not need to use all of the rows in the table):
 [3 marks]

a b c

0 2 . 2 A programmer mistakenly tries to shorten the subroutine in Figure 2 by replacing

the lines:

 c ← a + b
 WHILE a < c

With the line:

 WHILE a < (a + b)

Explain why this change is a mistake.

 [2 marks]

4

 Specimen paper 1 v1.0

0 2 . 3 What value is returned by the subroutine call TotalOut(x, 0) where x is any
positive integer?

 [1 mark]

6

5

Specimen paper 1 v1.0 Turn over 

There are no questions printed on this page

Turn over for the next question

DO NOT WRITE ON THIS PAGE
ANSWER IN THE SPACES PROVIDED

6

 Specimen paper 1 v1.0

0 3 Black and white bitmap images can be encoded using 1 to represent black and 0 to
represent white and arranging the pixels in a two-dimensional array.

The algorithm in Figure 3 calculates the number of black pixels in a bitmap image
stored in a two-dimensional array called image, which has 4 rows and 3 columns.

Four parts of the code labelled L1, L2, L3 and L4 are missing.

Figure 3

• For this algorithm, array indexing starts at 1.

num_of_black ← L1
num_of_rows ← 4
num_of_cols ← 3
x ← 1
WHILE x L2 num_of_rows
 y ← 1
 WHILE y ≤ num_of_cols
 IF image[x][y] = L3 THEN
 num_of_black ← num_of_black + 1
 ENDIF
 y ← L4
 ENDWHILE
 x ← x + 1
ENDWHILE

0 3 . 1 Shade one lozenge to show which value should be written at point L1 of the

algorithm in Figure 3.

 [1 mark]

A -1

B 0

C 1

0 3 . 2 Shade one lozenge to show which operator should be written at point L2 of the

algorithm in Figure 3.
 [1 mark]

 A =
 B ≥
 C ≤

7

Specimen paper 1 v1.0 Turn over 

0 3 . 3 Shade one lozenge to show which value should be written at point L3 of the

algorithm in Figure 3.
 [1 mark]
 A -1
 B 0
 C 1

0 3 . 4 Shade one lozenge to show what code should be written at point L4 of the algorithm

in Figure 3.
 [1 mark]
 A x
 B x + 1
 C y

 D y + 1

 4

8

 Specimen paper 1 v1.0

0 4 The algorithm in Figure 4 is the binary search algorithm designed to search for a
value within an array.

Figure 4

0 4 . 1 Complete the trace table for the algorithm in Figure 4 (you may not need to use all

of the rows in the table). The final value of left is already given.

[5 marks]

val left right mid arr[mid]

 4

0 4 . 2 Why would the binary search algorithm shown in Figure 4 not work when the array

arr contains [5, 3, 13, 872, 655, 43]?
 [1 mark]

• Line numbers are included but are not part of the algorithm.
• For this algorithm, array indexing starts at 1.

1 val ← 43
2 arr ← [3, 5, 13, 43, 655, 872]
3 left ← 1
4 right ← LENGTH(arr)
5 WHILE left ≠ right
6 mid ← (left + right) DIV 2
7 IF val ≤ arr[mid] THEN
8 right ← mid
9 ELSE
10 left ← mid + 1
11 ENDIF
12 ENDWHILE

9

Specimen paper 1 v1.0 Turn over 

0 4 . 3 There are alternative statements that could have been used on line 5 of the algorithm
shown in Figure 4 that would not change the functionality of the algorithm.

Shade one lozenge to show which of the following lines could not replace line 5 in
Figure 4 as it would change the functionality of the algorithm.

 [1 mark]
 New Line 5
 A WHILE left < right
 B WHILE NOT (left = right)
 C WHILE left < right AND left > right

 D WHILE left < right OR left > right

Question 4 continues on the next page

10

 Specimen paper 1 v1.0

0 4 . 4 The final value of left in the algorithm shown in Figure 4 is 4. A programmer
realises that they can use this value to check whether val has been found or not in
the algorithm shown in Figure 4.

The programmer wants to extend the algorithm and introduce a new variable called
found that is true when the value has been found in the array or false
otherwise.

Write the pseudo-code or draw the flowchart that is needed to extend the algorithm
so that when the algorithm finishes, the new variable found is:

• true when val is found in arr
• false when val is not found in arr

This code should follow on from the end of the algorithm in Figure 4.

 [4 marks]

11

11

Specimen paper 1 v1.0 Turn over 

0 5 . 1 Calculate the file size in bits for a two minute sound recording that has used a sample
rate of 1000 Hertz (Hz) and a sample resolution of 5 bits.

You should show your working.

 [3 marks]

0 5 . 2 Another sound file has a size of 24,000 bits. What is 24,000 bits in kilobytes?

You should show your working.

 [2 marks]

Question 5 continues on the next page

12

 Specimen paper 1 v1.0

0 5 . 3 Sound files are stored as bit patterns. Bit patterns are often compressed.

Compress the following bit pattern using run length encoding.

0000 0011 1111 1000 0000 0000 0111 1111

 [4 marks]

0 5 . 4 Shade one lozenge which shows the true statement about run length encoding:

 [1 mark]
 A It will always make a file smaller.

 B It is most effective on data that appears random.

 C It will not lose any of the original data.

10

13

Specimen paper 1 v1.0 Turn over 

0 6 Figure 5 shows the start of an algorithm.

Figure 5

OUTPUT ꞌenter the 24 hour number (0-23)ꞌ
hour ← USERINPUT

The algorithm in Figure 5 asks the user to enter a number between 0 and 23
that represents an hour using the 24 hour clock. The input is stored in a
variable called hour.

Extend the algorithm in Figure 5, using either pseudo-code or a flowchart, so
that it outputs the equivalent time using the 12 hour clock, ie a number
between 1 and 12, followed by either am or pm.

For example:

• If the user enters 0, the program outputs 12 followed by am.
• If the user enters 4, the program outputs 4 followed by am.
• If the user enters 12, the program outputs 12 followed by pm.
• If the user enters 15, the program outputs 3 followed by pm.

You can assume that the variable hour is an integer and that the value that
the user inputs will be between 0 and 23.

 [7 marks]

 7

14

 Specimen paper 1 v1.0

0 7 . 1 Complete the truth table for the OR logic gate:
[1 mark]

A B A OR B
0 0
0 1
1 0
1 1

0 7 . 2 Complete the truth table for the logic circuit shown in Figure 6.

Figure 6

[3 marks]

A B X Y Z
0 0
0 1
1 0
1 1

0 7 . 3 A logic circuit is being developed for an automatic door system:

• The automatic door has two sensors, one on either side of the door, sensor

F and sensor B. The door opens when either of these sensors is activated.
• The door system can also be turned on/off using a manual switch, S. The

door will not open unless S is on.
• The output from this logic circuit, for whether the door is open or not, is D.

Complete the logic circuit diagram for this system:
[3 marks]

7

F

B

S

D

15

Specimen paper 1 v1.0 Turn over 

0 8 Four separate subroutines have been written to control a robot.

• Forward(n) moves the robot n squares forward.
• TurnLeft() turns the robot 90 degrees left
• TurnRight() turns the robot 90 degrees right
• ObjectAhead() returns true if the robot is facing an object in the next

square or returns false if this square is empty.

0 8 . 1 Draw the path of the robot through the grid below if the following program is
executed (the robot starts in the square marked by the ↑ facing in the direction of
the arrow).

Forward(2)
TurnLeft()
Forward(1)
TurnRight()
Forward(1)

[3 marks]

↑

Question 8 continues on the next page

16

 Specimen paper 1 v1.0

0 8 . 2 Draw the path of the robot through the grid below if the following program is
executed (the robot starts in the square marked by the ↑ facing in the direction of
the arrow). If a square is black then it contains an object.

WHILE ObjectAhead() = true
 TurnLeft()
 IF ObjectAhead() = true THEN
 TurnRight()
 TurnRight()
 ENDIF
 Forward(1)
ENDWHILE
Forward(1)

[3 marks]

↑

17

Specimen paper 1 v1.0 Turn over 

0 8 . 3 A robot needs to visit every square in the following grid that does not contain an
object:

 ↑

The objects are shown as black squares.

Complete the algorithm by writing the following instructions in the correct places
(you will need to use each instruction exactly once):

Forward(distance)

distance ← distance - 1

distance ← 4

TurnLeft()

TurnLeft()

WHILE distance > 0

Forward(distance)

ENDWHILE

[4 marks]

10

18

 Specimen paper 1 v1.0

0 9 Figure 7 shows a famous algorithm that calculates the largest whole number that
can be divided into two given numbers without leaving a remainder. For example,
given the two numbers 12 and 16, 4 is the largest whole number that divides into
them both.

Figure 7

0 9 . 1 Complete the trace table for the algorithm in Figure 7 when the user enters 15 and

then 39 (you may not need to use all of the rows in the table).

The first line has been completed for you.

[4 marks]

num1 num2
15 39

0 9 . 2 State the line number from the algorithm in Figure 7 where selection is first used.

 [1 mark]

Line numbers have been included but are not part of the
algorithm.

1 num1 ← USERINPUT
2 num2 ← USERINPUT
3 WHILE num1 ≠ num2
4 IF num1 > num2 THEN
5 num1 ← num1 – num2
6 ELSE
7 num2 ← num2 – num1
8 ENDIF
9 ENDWHILE

19

Specimen paper 1 v1.0 Turn over 

0 9 . 3 State the line number from the algorithm in Figure 7 where iteration is first used.

 [1 mark]

0 9 . 4 How many lines in the algorithm in Figure 7 use variable assignment?

 [1 mark]

0 9 . 5 A programmer wants to implement the algorithm in Figure 7 in their code. Explain

why it could be a benefit to implement this as a subroutine.
 [2 marks]

Turn over for the next question

9

20

 Specimen paper 1 v1.0

1 0 The variables a, b and c in Figure 8 are assigned string values.

Figure 8

a ← 'bitmap'
b ← 'pixel'

 c ← 'bit’

1 0 . 1 Shade one lozenge which shows the concatenation of the variables a and b shown

in Figure 8.
 [1 mark]
 concatenation of the variables a and b
 A bitmap pixel
 B bitmappixel
 C ab

 Strings can also be represented as arrays of characters. For instance, the three

statements below are an alternative to the statements shown in Figure 8 where those
strings are now being represented as arrays of characters.

a ← ['b','i','t','m','a','p']
b ← ['p','i','x','e','l']
c ← ['b','i','t']

• For the following questions, array indexing starts at 1.

1 0 . 2 Shade two lozenges which correspond to the two true statements about these

arrays.
 [2 marks]
 A a[1] = b[1] OR a[1] = c[1]
 B LENGTH(b) ≥ LENGTH(a)
 C NOT (a[6] = b[1] AND a[3] = c[3])

 D a = a[5]
 E a[LENGTH(a) – LENGTH(c)] = c[3]

21

Specimen paper 1 v1.0 Turn over 

1 0 . 3 Develop a subroutine called Prefix, using either pseudo-code or a flowchart,
which takes two character arrays called word and pre as parameters and
determines whether the start of the character array word is the same as all of the
character array pre.

For example using the character arrays:

a ← ['b','i','t','m','a','p']
b ← ['p','i','x','e','l']
c ← ['b','i','t']

• a starts with the same sequence of characters as c so Prefix(a, c)

would return true
• b does not start with the same sequence of characters as c so

Prefix(b, c) would return false.

Your subroutine should also:

• work for character arrays of all lengths greater than 0
• not assume that the length of pre is less than the length of word.

The start of your subroutine has been completed for you.

SUBROUTINE Prefix(word, pre)

 [9 marks]

22

 Specimen paper 1 v1.0

END OF QUESTIONS

12

23

 Specimen paper 1 v1.0

DO NOT WRITE ON THIS PAGE
ANSWER IN THE SPACES PROVIDED

Acknowledgement of copyright holders and publishers

Permission to reproduce all copyright material has been applied for. In some
cases, efforts to contact copyright holders have been unsuccessful and AQA will
be happy to rectify any omissions of acknowledgements in future papers if
notified.

Copyright © 2015 AQA and its licensors. All rights reserved.

