Surname	Centre Number	Candidate Number
Other Names		0

GCSE

0236/01

SCIENCE FOUNDATION TIER CHEMISTRY 1

A.M. TUESDAY, 12 June 2012

45 minutes

Suitable for Modified Language Candidates

For Examiner's use only				
Question	Maximum Mark	Mark Awarded		
1.	8			
2.	6			
3.	4			
4.	7			
5.	7			
6.	3			
7.	7			
8.	8			
Total	50			

ADDITIONAL MATERIALS

In addition to this paper you will need a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions.

Write your answers in the spaces provided in this booklet.

If you run out of space, use the continuation page at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

The Periodic Table is printed on the back cover of the examination paper and the formulae for some common ions on the inside of the back cover.

Answer all questions.

1.	(a)	The following box contains some information about chemical reactions.
		Read the information carefully. Answer the questions that follow.

Chemical reactions involve converting reactants into products. reactants → products They are used in industry to produce new and useful materials from raw materials. Raw materials can be obtained from the earth, sea and air. Examples of raw materials include crude oil, nitrogen and metal ores. Useful products include fuels, plastics, medicines, metals and fertilisers. Use the information in the box above to help you answer parts (i)-(iv). What happens during a chemical reaction? [1] Why are chemical reactions are important in industry? [1] (iii) Name a raw material obtained from the earth. [1] II. the air. [1] Name the raw material used to produce petrol. [1]

- (b) Sulphuric acid, H_2SO_4 , is produced during the Contact Process. One stage of the process involves burning sulphur in air to produce sulphur dioxide, SO_2 .
 - (i) Name the gas, found in the air, that reacts with sulphur to form sulphur dioxide.

[1]

- ii) How many atoms of sulphur are found in a molecule of sulphur dioxide, SO₂?

 [1]
- (iii) Give the **total** number of atoms found in a molecule of sulphuric acid, H_2SO_4 .

.....

8

[1]

2. (a) The following table shows information about some ionic substances. There are **three** errors (mistakes) in the table.

Circle each of the three errors (mistakes).

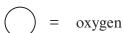
[3]

Name	Positive ion present	Negative ion present	Formula
sodium chloride	Na ⁺	Cl ⁻	NaCl
calcium chloride	Ca ²⁺	Cl ⁻	CaCl
magnesium oxide	Mg ²⁺	O^{2-}	${ m MgO}_2$
potassium iodide	Li ⁺	I ⁻	KI

(b) Ammonia, NH₃, can be represented by the diagram shown below.

(i)	State	why	ammonia	is a	compound.
-----	-------	-----	---------	------	-----------

[1]


ii)	I.	Use the diagram of ammonia to complete the key shown below.

[1]

carbon

= ,.....

II. Use the key to draw a diagram that represents a molecule of methane, CH_4 .

[1]

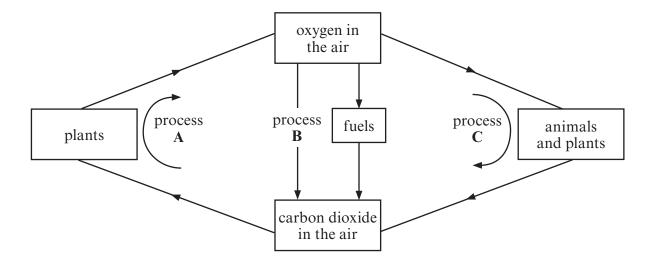
© WJEC CBAC Ltd. (0236-01)

Turn over.

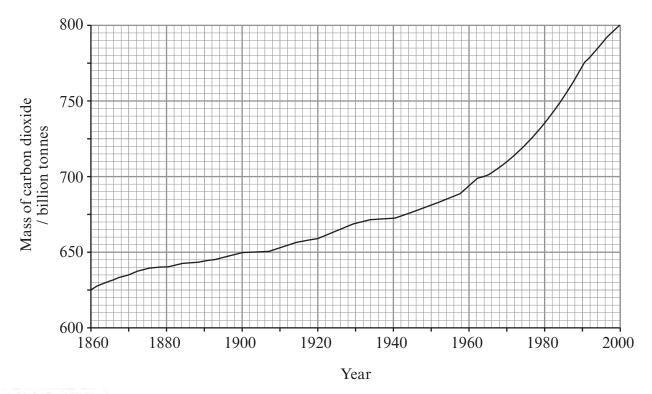
0236 010003

6

air freshener	deodorant	shampoo	window cleaner
Use of nano-silve	r		
Give a property of below.	of nano-silver that allo	ows it to be used	in this way. Choose fr
anti haatarial	11		4 11 4
	low density -silver		
Property of nano	<u> </u>		
Property of nano-	silverange of nano-silver p	articles? Choose	from the box below.
Property of nano- What is the size 1 1-100 cm	silverange of nano-silver p	articles? Choose	from the box below. 1-100 nm

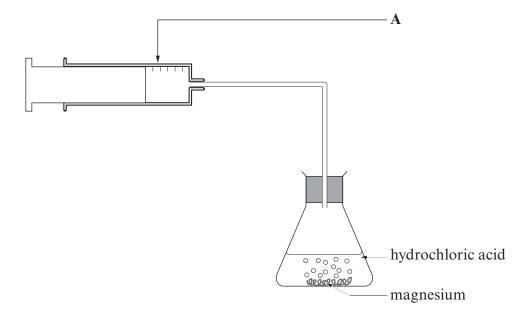

3.

BLANK PAGE


PLEASE DO NOT WRITE ON THIS PAGE

4. Levels of oxygen and carbon dioxide in the air are maintained (kept the same) by the processes shown in the following diagram.

- (a) Give the letter, A, B or C from the diagram, which represents the process of respiration, photosynthesis, combustion.
- (b) The following graph shows how the mass of carbon dioxide in the atmosphere has changed since 1860.


0236 010007

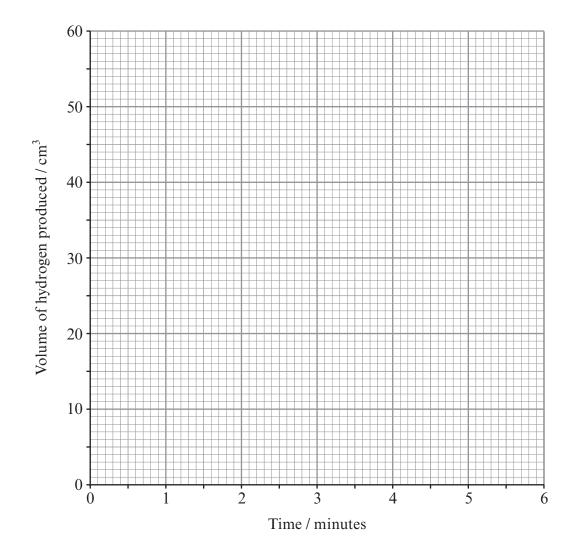
	ge in mass of carbon a reason for this char	n dioxide in the atmos nge.	sphere betwee
Change	billion tonn	es	
Reason			
		in carbon dioxide le	
		in carbon dioxide levere. Choose the correc	
the temperature of			
the temperature of below.	the Earth's atmosphe	ere. Choose the correc	
the temperature of below. decreases	the Earth's atmosphe	stays the same	

5. When magnesium ribbon is added to hydrochloric acid, magnesium chloride and hydrogen gas are produced.

(a) Write a word equation for the reaction taking place. [2]

(b) The rate of this reaction can be investigated using the apparatus shown below.

(i) Name the apparatus **A**, shown in the diagram. [1]


Examiner only

(ii) John carried out an experiment using the apparatus shown opposite. He measured the volume of hydrogen every minute for 6 minutes. His results are shown in the table below.

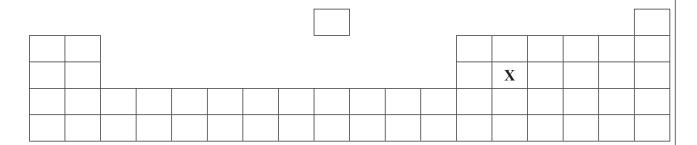
Time / minutes	0	1	2	3	4	5	6
Volume of hydrogen produced / cm ³	0	20	34	42	48	50	50

Plot the results from the table on the grid below. Draw a line of best fit. Your line should go through the origin (0,0).

[3]

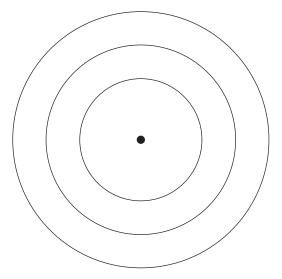
(iii) John used an *excess* of hydrochloric acid during the experiment. Give the reason why the reaction came to an end after 5 minutes. [1]

6. In 1915 Alfred Wegener suggested that the Earth's continents were once joined and that they had drifted apart to their present positions.


Complete the following sentences, describing the evidence Wegener used to support his idea. Choose words from the box below. [3]

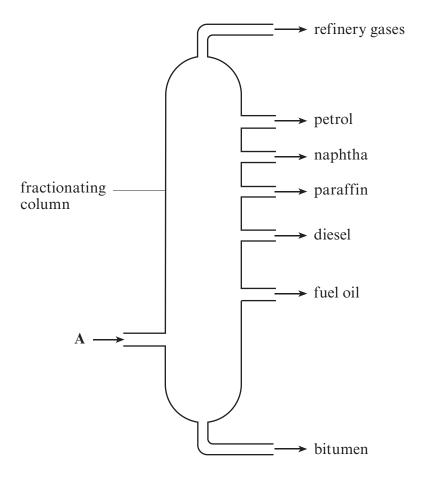
animals	coastlines	countries	earthq	uakes	fossils
me	ountains	plants	rocks	volcan	oes

Wegener noticed that the	of different continents appear to have
shapes that would fit together like a jigsaw.	
He also found that similar patterns of	of the same age and
similar exist on differe	nt continents, separated by huge oceans.


7. The following diagram shows an outline of the Periodic Table of Elements.

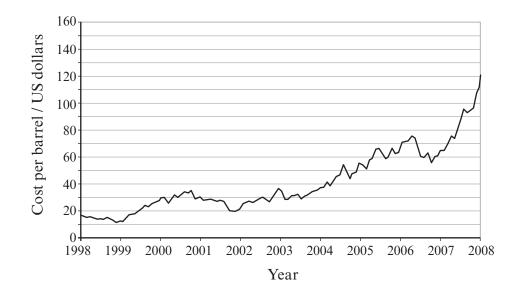
You may find the Periodic Table shown on the back page of this examination paper useful in answering this question.

Use the letters A-E. Show the position of the following elements on the diagram above. (a)


- **A** the most reactive alkali metal
- **B** the least reactive halogen
- C the gas used to fill weather balloons
- **D** the element that reacts with sodium to produce sodium chloride
- E the element with electronic structure 2, $\hat{8}$,2
- (b) Complete the diagram below to show the electronic structure of the element shown in position **X** in the table above.

How can the electronic structure be used to determine an element's atomic number? [1] (c)

8. (a) Crude oil is a mixture of compounds called hydrocarbons. They can be separated into fractions in a fractionating column as shown below.



(1)	Name the elements present in all hydrocarbons.	[1]
	and	
(ii)	State what must happen	
	I. to the crude oil before it enters the column at point A,	[1]
	II. in order to collect the fractions as liquids.	[1]
(iii)	Give the name of this process.	[1]

(iv)	Explain why petrol is collected above diesel in the fractionating column.									
		.								

(b) The following graph shows how the average price of crude oil changed between 1998 and 2008.

(i)	State the trend in oil price over this period.	[1]
(ii)	Suggest a reason for this trend.	[1]

© WJEC CBAC Ltd.

Question number	Write the question numbers in the left-hand margin	Examiner only

FORMULAE FOR SOME COMMON IONS

POSITIV	VE IONS	NEGATI	ATIVE IONS		
Name	Formula	Name	Formula		
Aluminium	Al ³⁺	Bromide	Br ⁻		
Ammonium	NH_4^+	Carbonate	CO_3^{2-}		
Barium	Ba^{2+}	Chloride	Cl ⁻		
Calcium	Ca ²⁺	Fluoride	${f F}$ $^-$		
Copper(II)	Cu ²⁺	Hydroxide	OH^-		
Hydrogen	H^{+}	Iodide	Ι -		
Iron(II)	Fe ²⁺	Nitrate	NO_3^-		
Iron(III)	Fe ³⁺	Oxide	O^{2-}		
Lithium	Li^{+}	Sulphate	$\mathrm{SO_4}^{2-}$		
Magnesium	Mg^{2+} Ni^{2+}				
Nickel	Ni^{2+}				
Potassium	K ⁺				
Silver	$\mathbf{Ag}^{\mathbf{+}}$				
Sodium	Na ⁺				

PERIODIC TABLE OF ELEMENTS

					2		16							
0	⁴ ₂ He	Helium	$^{20}_{10}\mathrm{Ne}$	Neon	$^{40}_{18}{ m Ar}$	Argon	84 Kr	Krypton	¹³¹ Xe	Xenon	$_{86}^{222}\mathrm{Rn}$	Radon		
L			19 F	Fluorine	35 CI	Chlorine	$^{80}_{35}\mathrm{Br}$	Bromine	I_{53}^{77}	Iodine	²¹⁰ ₈₅ At	Astatine		
9			160	Oxygen	32 S 16	Sulphur	⁷⁹ Se	Selenium	¹²⁸ ₅₂ Te	Tellurium	²¹⁰ ₈₄ Po	Polonium		
w			N_7^{14}	Nitrogen	31 P	Phosphorus	75 As	Arsenic	122 Sb	Antimony	209 83 Bi	Bismuth		
4			$^{12}_{6}$ C	Carbon	28 Si	Silicon	73 Ge	Germanium	119 Sn	Tin	²⁰⁷ ₈₂ Pb	Lead		
8			11 B	Boron	27 A1	Aluminium	70 Ga	Gallium	115 In	Indium	$^{204}_{81} { m Tl}$	Thallium		
		'					$^{65}_{30}\mathrm{Zn}$	Zinc	112 Cd	Cadmium	²⁰¹ ₈₀ Hg	Mercury		
							64 29 Cu	Copper	$^{108}_{47}\mathrm{Ag}$	Silver	¹⁹⁷ ₇₉ Au	Gold		
							$^{59}_{28}\mathrm{Ni}$	Nickel	106 Pd 46 Pd	Palladium	195 Pt	Platinum		
	H_1^1	Hydrogen					⁵⁹ Co	Cobalt	¹⁰³ ₄₅ Rh	Rhodium	$^{192}_{77}{ m Ir}$	Iridium		
dno			•				⁵⁶ Fe	Iron	101 44 Ru	Ruthenium	190 Os	Osmium		
Gro							55 Mn	Manganese	99 Tc	Technetium	¹⁸⁶ Re	Rhenium		
							⁵² Cr	Chromium	⁹⁶ ₄₂ Mo	Molybdenum	184 W	Tungsten		Key:
							51 V 23 V	Titanium Vanadium	93 Nb	Zirconium Niobium	$^{181}_{73}{ m Ta}$	Tantalum		
							48 Ti	Titanium	$^{91}_{40}\mathrm{Zr}$	Zirconium	179 Hf	Hafnium		
							45 Sc	Scandium	$^{89}_{39}$ Y	Yttrium	139 La	Lanthanum	227 Ac	Actinium
7			⁹ ₄ Be	Beryllium	²⁴ Mg	Magnesium	⁴⁰ ₂₀ Ca	Calcium	88 38 Sr	Strontium	137 Ba	Barium	$^{226}_{88}\mathrm{Ra}$	Radium
			⁷ Li	Lithium	23 Na	Sodium	39 K	Potassium	86 Rb	Rubidium	133 Cs	Caesium	$^{223}_{87}\mathrm{Fr}$	Francium

- Element Symbol

×

N

Atomic number —

Mass number

Name

© WJEC CBAC Ltd.

(0236-01)