Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

General Certificate of Secondary Education Foundation Tier June 2012

PH2FP

Additional Science

Unit Physics P2

Physics

Unit Physics P2

Wednesday 30 May 2012 1.30 pm to 2.30 pm

For this paper you must have:

- a ruler
- the Physics Equations Sheet (enclosed).

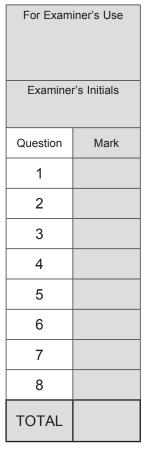
You may use a calculator.

Time allowed

1 hour

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.


Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 60.
- You are expected to use a calculator where appropriate.
- Question 8(b) should be answered in continuous prose. In this question you will be marked on your ability to:
 - use good English
 - organise information clearly
 - use specialist vocabulary where appropriate.

Advice

• In all calculations, show clearly how you work out your answer.

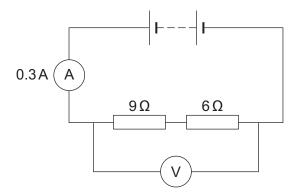
Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

Answer all questions in the spaces provided.

- 1 (a) The diagram shows the lifecycle of a star.
- 1 (a) (i) Use words or phrases from the box to complete the sentences contained in the diagram.

black dwarf	black hole	protostar	red giant	
	Gas and dust are pulle	d together to form a		
•	The star gives out ener	gy as a main seque	ence star.	
	The star expands form	ing a		
	The star shrinks to form	n a white dwarf.		
•	The star fades away as	s a		mar

1 (a) (ii) The table compares the approximate size of three stars with the size of the Sun.


Star	Size
Alpha Centauri A	the same as the Sun
Betelgeuse	1120 times bigger than the Sun
Cephei	1520 times bigger than the Sun

	Which one of these three stars has the lifecycle shown in part (a) (i)?			
	Give a reason for your answer.			
		(2 marks)		
1 (b)	Which one of the following describes the pr	rocess by which energy is given out in stars?		
	Tick (✓) one box.			
	Atomic nuclei inside the star join together.			
	Atomic nuclei inside the star split apart.			
	Gases inside the star burn.	(1 mark)		

Turn over for the next question

2 (a) The diagram shows a simple circuit.

2	(a)	(i)	Calculate	the t	otal	resistance	of the	two	resistors	in	the	circuit	ŀ
_	(a)	(1)	Calculate	uici	Otai	1 CSISIAI ICC	OI LIIC	LVVO	103131013	111	uic	Circuit	Ļ

Total resistance = Ω (1 mark)

2 (a) (ii) Calculate the reading on the voltmeter.

Use the correct equation from the Physics Equations Sheet.

Show clearly how you work out your answer.

.....

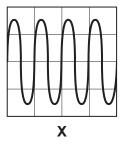
Voltmeter reading =V
(2 marks)

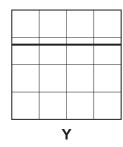
2 (a) (iii) Draw a ring around the correct answer in the box to complete the sentence.

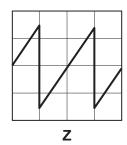
Replacing one of the resistors with a resistor of higher value will

decrease not change

increase


the reading on the ammeter.


(1 mark)


2 (b) The voltmeter in the circuit is replaced with an oscilloscope.

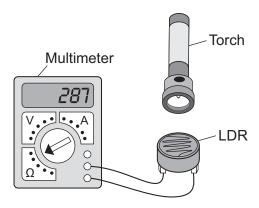
Which one of the diagrams, \mathbf{X} , \mathbf{Y} or \mathbf{Z} , shows the trace that would be seen on the oscilloscope?

Write your answer, \boldsymbol{X} , \boldsymbol{Y} or \boldsymbol{Z} , in the box.

	Diagram	
Give a reason for your answer.		
	(2	 marks)

Turn over for the next question

The diagram shows a worker using a constant force of 60 N to push a crate across the 3



- 3 (a) The crate moves at a constant speed in a straight line.

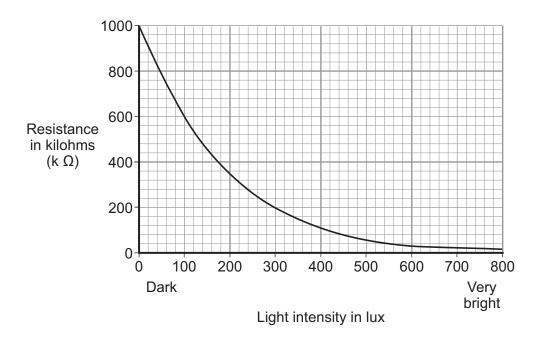
3 (a) (I)	moving crate.	snow the direction of the f	riction force acting on the
	moving crate.		(1 mark)
3 (3) (ii)	State the size of the friction force a	acting on the moving crate	
3 (a) (II)	State the size of the inction force a	acting on the moving crate	: .
	N		
	Give the reason for your answer.		
			(2 marks)
3 (b)	Calculate the work done by the wo	rker to push the crate 28	metres.
	Use the correct equation from the	Physics Equations Sheet.	
	Show clearly how you work out yo	ur answer and give the ur	it.
	Choose the unit from the list below	<i>1</i> .	
	joule	newton	watt
		Work done =	
			(3 marks)

A student used the apparatus below to find out how the resistance of a light-dependent resistor (LDR) depends on light intensity.

The resistance of the LDR was measured directly using a multimeter.

4 (a) (i) Which one of the following is the correct circuit symbol for a LDR?

Draw a ring around your answer.


(1 mark)

4 (a) (ii)	Name one factor that will affect the intensity of the light hitting the LDR.	
	(1 mark)

Question 4 continues on the next page

4 (b) The manufacturer of the LDR provides data for the LDR in the form of a graph.

Describe how the resistance of the LDR changes when the light intensity increas from 100 lux to 300 lux.	ity increases		
(2	marks		

4 (c) The student only obtained three results.	These are given in the table.
---	-------------------------------

Light intensity	Resistance in kilohms
Dark	750
Bright	100
Very bright	1

4 (c) (i)	The student could not use the results to draw a line graph. Why not?	
		(1 mark)
4 (c) (ii)	Do the student's results agree with the data the manufacturer provided	?
	Draw a ring around your answer. YES NO	
	Give a reason for your answer.	
		(1 mark)
4 (d)	Which one of the following circuits probably includes a LDR?	
	Tick (✓) one box.	
	A circuit that automatically switches outside lights on when it gets dark.	
	A circuit that automatically switches central heating on and off.	
	A circuit that automatically turns lights off when no one is in the room.	
		(1 mark)

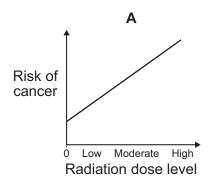
Turn over for the next question

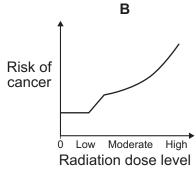
5 (a)	The diag	gram shows a piec	e of two-core cable an	d a piece of three-c	ore cable.
	Įlns	ulation			
5		Insula	ation		I have reading
					Live wire Earth wire
		Co	opper wire		leutral wire
	Two-c	ore cable		core cable	
5 (a) (i)	Which o	one of the wires ins	side a three-core cable	is missing from a to	wo-core cable?
	Draw a	ring around your a	nswer.		
	eart	th wire	live wire	neutral	wire (1 mark)
					(Tillark)
5 (a) (ii)	Use a w	ord from the box to	o complete the followir	ng sentence.	
		double	extra	totally	
	A potter	v table lamp fitted	with a two-core cable i	is safe to use becau	use it is
			insulated.		(1 mark)
5 (b)	The max	ximum current that	power sockets in a bucan safely pass through rouit to protect the wiri	gh these wires is 20	
	Explain	how a fuse protect	s the wiring of a circui	t.	
					(3 marks)
					(= = = = = = = = = = = = = = = = = = =

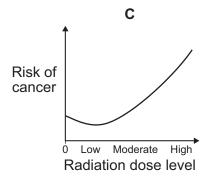
5

The table shows the average background radiation dose from various sources that a person living in the UK receives in one year.

Source of background radiation	Average radiation dose received each year in dose units
Cosmic rays (from space)	300
Food and drink	250
Medical treatments (including X-rays)	350
Radon gas	1250
Rocks	350
TOTAL	2500


6 (a) (i)	A student looked at the data in the table and then wrote down four statement	ents.
	Only two of the statements are true.	
	Put a tick (✓) in the boxes next to the two true statements.	
	More than half of the average radiation dose comes from radon gas.	
	On average, cosmic rays produce less background radiation than rocks.	
	Everyone living in the UK receives the same background radiation dose.	
	Having no X-rays reduces a person's radiation dose.	
		(2 marks)
6 (a) (ii)	Each time a chest X-ray is taken, the patient receives about 100 units of ra	adiation.
	How many chest X-rays would just exceed the yearly average dose for me treatments?	dical
	Number of chest X-rays =	
	Hamber of Sheet X rays	(2 marks)


Question 6 continues on the next page



6 (b) Exposure to radiation can cause cancer.

The graphs, **A**, **B** and **C**, show three different ways that the exposure to radiation and the risk of getting cancer could be linked.

6 (b) (i) What do all three of these graphs suggest happens to the risk of getting cancer when the radiation dose goes from moderate to high?

(1 mark)

6 (b) (ii) Some scientists believe that exposure to **low** radiation doses reduces the chance that a person will get cancer. This effect is called 'radiation hormesis'.

Which **one** of the graphs, **A**, **B** or **C**, shows 'radiation hormesis'?

Write your answer in the box.	

Give a reason for your answer.

(2 marks)

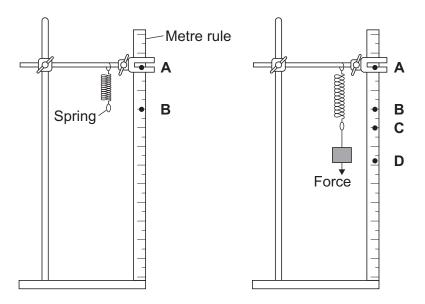
6 (c) Scientists did an experiment in which mice were exposed to different doses of radiation. The results from the experiment are given in the table.

Description of exposure	Percentage of mice getting cancer
Mice exposed to a low dose of radiation and then a high dose of radiation.	16%
Mice exposed to a high dose of radiation only.	46%

6 (c) (i)	Do the results from this experiment provide evidence to support 'radiation hormesis'?				
	Draw a ring around your answer.	IO .	YES		
	Explain the reason for your answer.				
				(2	 marks)
6 (c) (ii)	Complete the following sentence by drawing	a ring aroun	d the co	orrect word in the	e box.
		environm	ental		
	Using animals in scientific experiments raise	s ethical		issues.	
		social			
				(*)	1 mark)

10

Turn over for the next question

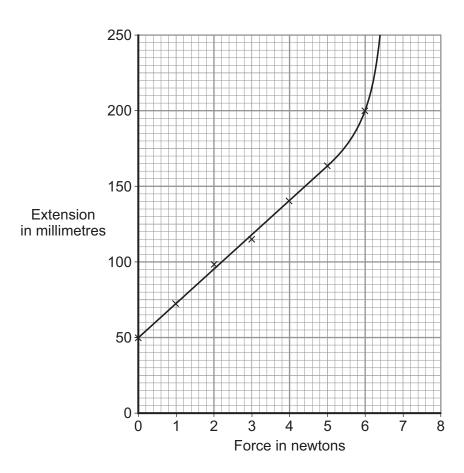


7 A student investigated how the extension of a spring depends on the force applied to the spring.

The diagram shows the spring before and after a force had been applied.

7 (a) (i) Complete the following sentence using letters, A, B, C or D, from the diagram.

	The extension of the spring is the distance between the positions labelled	
	and on the metre rule.	(1 mark)
(a) (ii)	What form of energy is stored in the stretched spring?	


Question 7 continues on the next page

(1 mark)

7

7 (b) The results from the investigation are plotted on the following graph.

7 (b) (i) The graph shows that the student has made an error throughout the investigation.

What error has the student made?	
Give the reason for your answer.	
	(2 marks)

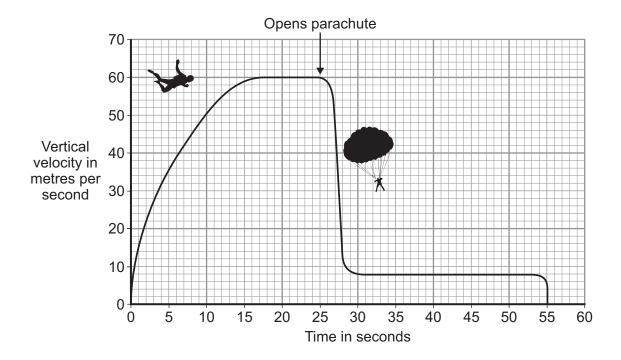
7 (b) (ii)	The student has loaded the spring beyond its <i>limit of proportionality</i> .
	Mark on the graph line the <i>limit of proportionality</i> of the spring. Label the point P .
	Give the reason for choosing your point P .
	(2 marks)
7 (c)	The student uses a different spring as a spring balance. When the student hangs a stone from this spring, its extension is 72 mm.
	The spring does not go past the limit of proportionality.
	Calculate the force exerted by the stone on the spring.
	spring constant = 25 N/m
	Use the correct equation from the Physics Equations Sheet.
	Show clearly how you work out your answer.
	Force =

Turn over for the next question

8 (a) The diagram shows the forces acting on a parachutist in free fall.

The parachutist has a mass of 75 kg.

Calculate the weight of the parachutist.


gravitational field strength = 10 N/kg

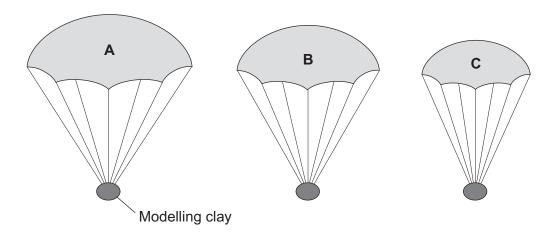
Use the correct equation from the Physics Equations Sheet.
Show clearly how you work out your answer and give the unit.
Weight =
(3 marks

8 (b) In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

The graph shows how the vertical velocity of a parachutist changes from the moment the parachutist jumps from the aircraft until landing on the ground.

Using the idea of forces, explain why the parachutist reaches a terminal velocity and why opening the parachute reduces the terminal velocity.

(6 marks)


Question 8 continues on the next page

8 (c) A student wrote the following hypothesis.

'The larger the area of a parachute, the slower a parachutist falls.'

To test this hypothesis the student made three model parachutes, **A**, **B** and **C**, from one large plastic bag. The student dropped each parachute from the same height and timed how long each parachute took to fall to the ground.

	Name one other control variable in this experiment.			
		((1 mark)	
8 (c) (ii)	Use the student's hypothesis to prefirst.	edict which parachute, A , B or C , will hit the g	round	
	Write your answer in the box.			
	Give a reason for your answer.			

8 (c) (i) The height that the student dropped the parachute from was a control variable.

(2 marks)

12

END OF QUESTIONS

ACKNOWLEDGEMENT OF COPYRIGHT-HOLDERS AND PUBLISHERS

Question 3 My Revision Notes AQA GCSE Physics for A*−C, Steve Witney, © Hodder Education

Copyright © 2012 AQA and its licensors. All rights reserved.

