GATE 2012 Online Examination AG: AGRICULTURAL ENGINEERING

Duration: Three Hours

Read the following instructions carefully.

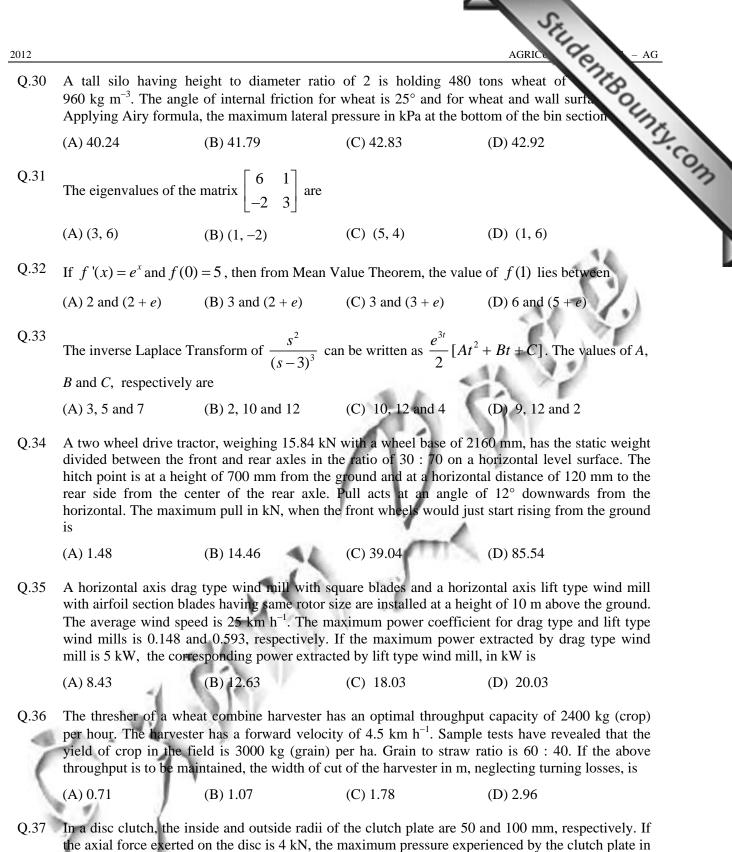
- StudentBounty.com 1. The computer allotted to you at the examination center runs a specialized software that permits only one answer to be selected for multiple choice questions using a mouse. Your answers shall be updated and saved on a server periodically and at the end of the examination.
- 2. To login, enter your Registration Number and password provided in the envelope. Go through the symbols used in the test and understand the meaning before you start the examination. You can view all questions by clicking on the View All Ouestions button in the screen after the start of the examination.
- 3. To answer a question, select the question using the selection panel on the screen and choose the correct answer by clicking on the radio button next to the answer. To change the answer, just click on another option. If you wish to leave a previously answered question unanswered, click on the button next to the selected option.
- 4. The examination will automatically stop at the end of 3 hours
- 5. There are a total of 65 questions carrying 100 marks. Except questions Q.26 Q.30, all the other questions are of multiple choice type with only one correct answer. Questions Q.26 - Q.30 require a numerical answer, and a number should be entered using the virtual keyboard on the monitor.
- 6. Questions Q.1 Q.25 carry 1 mark each. Questions Q.26 Q.55 carry 2 marks each. The 2 marks questions include two pairs of common data questions and two pairs of linked answer questions. The answer to the second question of the linked answer questions depends on the answer to the first question of the pair. If the first question in the linked pair is wrongly answered or is unattempted, then the answer to the second question in the pair will not be evaluated.
- 7. Questions Q.56 Q.65 belong to General Aptitude (GA) section and carry a total of 15 marks. Questions Q.56 – Q.60 carry 1 mark each, and questions Q.61 – Q.65 carry 2 marks each.
- 8. Unattempted questions will result in zero mark and wrong answers will result in **NEGATIVE** marks. There is no negative marking for questions of numerical answer type, i.e., for Q.26 - Q.30. For all 1 mark questions, ¹/₃ mark will be deducted for each wrong answer. For all 2 marks questions, ²/₃ mark will be deducted for each wrong answer. However, in the case of the linked answer question pair, there will be negative marks only for wrong answer to the first question and no negative marks for wrong answer to the second question.

Calculator is allowed. Charts, graph sheets or tables are **NOT** allowed in the examination hall. Do the rough work in the Scribble Pad provided.

10. You must sign this sheet and leave it with the invigilators at the end of the examination.

DECLARATION: I hereby declare that I have read and followed all the instructions given in this sheet.

Registration Number	AG				
Name					
Signature					

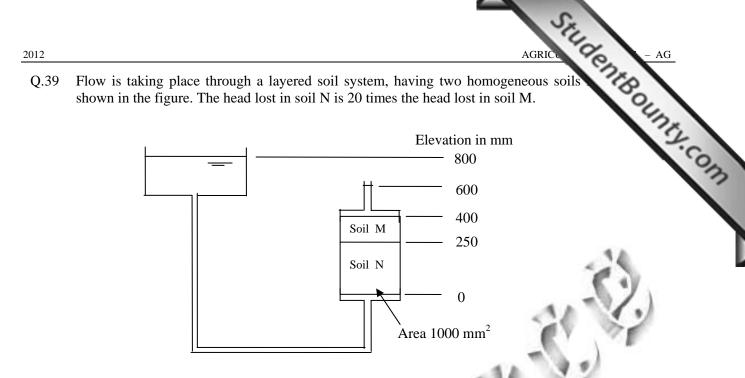

Verified that the above entries are correct.	
Invigilator's signature:	

012				AGRICU C
). 1 –	Q. 25 carry one mark e	ach.		1710
Q.1	The matrix $\begin{bmatrix} 0 & 2 \\ -2 & 0 \\ 3 & -4 \end{bmatrix}$	$\begin{bmatrix} -3 \\ 4 \end{bmatrix}$ is		04
	$\begin{bmatrix} -2 & 0 \\ 3 & -4 \end{bmatrix}$	$\begin{bmatrix} 4 \\ 0 \end{bmatrix}$		AGRICE HERRICOL
	(A) diagonal	(B) symmetric	(C) skew symmetric	(D) triangular
Q.2	The line $y = x - 1$ can	be expressed in polar	coordinates (r, θ) as	
	(A) $r = \cos \theta$ (C) $r(\cos \theta + \sin \theta) =$	1	(B) $r = \sin \theta$ (D) $r(\cos \theta - \sin \theta)$	=1
Q.3	The type of pump used	in forced water cooli	ng system of a tractor en	gine is
	(A) piston	(B) centrifugal	(C) gear	(D) vane
Q.4	Which one of the follo	wing statements is NC	OT appropriate regarding	cone index
	(A) It reflects strength(B) It is a composite pa(C) It is dimensionless(D) It is measured at a	of soil irameter	25	SA
Q.5	The draft and total p compared to a spring respectively are	ower requirement of tyne cultivator of equ	a rotary cultivator ope al cutting width under t	erating in concurrent mode a the same operating conditions
	(A) higher and higher(C) lower and higher	14	(B) lower and lower(D) higher and lower	
Q.6				iversal soil loss equation. Th is purpose, respectively are
	(A) 19, 12	(B) 21, 11	(C) 22, 9	(D) 23, 8
Q.7	The difference between	n Fore Bearing and Ba	ack Bearing of a traverse	line is
	(A) exactly 90°	(B) less than 180°	(C) exactly 180°	(D) greater than 180°
Q.8	A pumping device that known as	t combines the adva	ntages of both centrifug	al and reciprocating pumps i
<	(A) air lift pump(C) jet pump		(B) hydraulic ram(D) rotary pump	
Q.9				D_{AB} is the mass diffusivity of
	water vapour in air the	n the ratio V/D_{AB} is		
	(A) Stanton number(C) Schmidt number		(B) Prandtl number(D) Sherwood number	er
Q.10	Work index in size red	uction can be obtained	d by multiplying Bond's	energy constant with
Q.10				

				AGRICE AGRICE - AG $() \neq 0$, intersects the (a,b), (a,b) , (a,b)
2012				AGRICI – AG
Q.11	The tangent line to y	y = f(x) at the point (x)	(x_0, y_0) , assuming $f'(x)$	$) \neq 0$, intersects the
	(A) $(x_0 - [y_0/f'(x_0$)],0)	(B) $(x_0 + [y_0/f'(x_0$,)],0)
	(C) $(x_0 - [f'(x_0)/y_0)$],0)	(D) $(x_0 + [f'(x_0)/y)$	
Q.12	Approximate percent distribution is	tage of scores that fall v	within $\pm \sigma$ (standard de	viation) of the mean in a normal
	(A) 34	(B) 68	(C) 95	(D) 99
Q.13	The integrating facto	or of the differential equa	ation $(x+1)\frac{dy}{dx} - y = s$	sin x is
	(A) <i>x</i>	(B) $(x+1)$	(C) $1/x$	(D) $1/(x+1)$
Q.14	The constituent of p increasing its overall		cupies the highest perce	entage by volume and helps in
	(A) CO	(B) CO ₂	(C) H ₂	(D) CH ₄
Q.15	During field operati subjected to	on, the shank of a trac	ctor drawn rigid tyne s	sweep type cultivator is mainly
	(A) bending	(B) shear	(C) torsion	(D) bending and torsion
Q.16				⁻¹ . The straight link is pivoted at iolis acceleration of the slider in
	(A) 0.25	(B) 0.50	(C) 1.00	(D) 4.00
Q.17	The power developed ignition engine of the	ed and the exhaust gas e same size and running	temperature of a dies at the same speed respe	sel engine compared to a spark ectively, are
	(A) higher and lower(C) lower and higher		(B) higher and high(D) lower and lower	
Q.18	In a semi-modular ou	utlet, the discharge		
((B) depends upon the(C) depends upon the	f water levels in the dist e water levels of both di e water level in the distr e water level in the wate	stributary and water cou ibutary	
Q.19	reservoir is $Q = S/4$		nd storage are assumed	for an emergency spillway in a to be zero at time $t = 0$. If the $m^3 s^{-1}$ is
	(A) 152.84	(B) 164.84	(C) 172.34	(D) 184.84
Q.20	sectional area of flow		rimeter is 12.5 m and N	al gradient of 4%. If the cross- Manning's n for the waterway is
	(A) 1.9	(B) 2.1	(C) 2.3	(D) 2.5

012				AGRICE - A
Q.21		tiprocating pump dischater of 150 mm and a stro	÷	r per second at 40 rpt
	(A) 0.85	(B) 1.97	(C) 3.53	(D) 6.05
Q.22	conductivities of g		$0.02 \text{ W m}^{-1} \text{ K}^{-1}$, resp	AGRICE r per second at 40 rp r centage slip is (D) 6.05 Im layer of stagnant air. Therma rectively. If the film heat transfe
	(A) 1.50	(B) 1.00	(C) 0.06	(D) 0.04
Q.23	(centre to centre)			$n \times 4$ mm are placed 0.5 m apart and both the surface normals. The
	(A) 1.53×10^{-5}	(B) 1.76×10^{-5}	(C) 3.82×10^{-3}	(D) 4.41×10^{-3}
Q.24	•	h 10 Pa <i>sⁿ</i> consistency of coefficient of viscosity of the second seco		w behaviour index is flowing in a
	(A) 2.66	(B) 6.93	(C) 15.91	(D) 23.87
Q.25	A packed bed of 48	80 kg solid particles hav	ing particle size of 0.15	5 mm and density of 800 kg m ^{-3} i
	fluidized using air	age at minimum fluidiz	wheric pressure. If the object of the object	cross section of the empty bed i then the minimum height of the
	fluidized using air 0.45 m ² and voida	age at minimum fluidiz	oheric pressure. If the object of the object	cross section of the empty bed i
) 26	fluidized using air 0.45 m ² and voida fluidized bed, in m (A) 7.4	age at minimum fluidiz is (B) 5.4	zing condition is 0.5,	cross section of the empty bed i then the minimum height of the
	fluidized using air 0.45 m ² and voida fluidized bed, in m	age at minimum fluidiz is (B) 5.4	zing condition is 0.5,	cross section of the empty bed i then the minimum height of the
	fluidized using air 0.45 m ² and voida fluidized bed, in m (A) 7.4 to Q. 55 carry tw $\pi/2$	age at minimum fluidiz is (B) 5.4	condition is 0.5, (C) 2.7	cross section of the empty bed i then the minimum height of the (D) 1.0
	fluidized using air 0.45 m ² and voida fluidized bed, in m (A) 7.4 to Q. 55 carry tw $\pi/2$	age at minimum fluidiz is (B) 5.4 vo marks each.	condition is 0.5, (C) 2.7	cross section of the empty bed i then the minimum height of the (D) 1.0
Q.26 Q.26 Q.27	fluidized using air 0.45 m ² and voida fluidized bed, in m (A) 7.4 to Q. 55 carry tv The value of $\int_{0}^{\pi/2} cc$ (A) 0.95 A tractor power ta	age at minimum fluidiz is (B) 5.4 vo marks each. os <i>x dx</i> using trapezoida (B) 1.00 ake-off (PTO) driven s	condition is 0.5, (C) 2.7 I rule with two equal in (C) 1.22 tationary peg tooth ty	cross section of the empty bed i then the minimum height of the (D) 1.0
Q.26	fluidized using air 0.45 m ² and voida fluidized bed, in m (A) 7.4 to Q. 55 carry tv The value of $\int_{0}^{\pi/2} co$ (A) 0.95 A tractor power ta cylinder speed of 5	age at minimum fluidiz is (B) 5.4 vo marks each. os <i>x dx</i> using trapezoida (B) 1.00 ake-off (PTO) driven s	condition is 0.5, (C) 2.7 I rule with two equal in (C) 1.22 tationary peg tooth ty	cross section of the empty bed i then the minimum height of the (D) 1.0 (D) 1.29 pe wheat thresher operating at a
Q.26 Q.27	fluidized using air 0.45 m ² and voida fluidized bed, in m (A) 7.4 to Q. 55 carry tw The value of $\int_{0}^{\pi/2} cc$ (A) 0.95 A tractor power ta cylinder speed of 3 required, in kW is (A) 13 A border strip of 8 of the soil is 25 m	age at minimum fluidiz is (B) 5.4 vo marks each. os <i>x dx</i> using trapezoida (B) 1.00 ake-off (PTO) driven s 540 rpm requires a torq (B) 16 \times 250 m is being irrigat m h ⁻¹ (assumed to be concing sheet of water over	c) 2.7 (C) 2.7 I rule with two equal in (C) 1.22 tationary peg tooth typue of 250 Nm at PTO. (C) 18 ted by a border stream operation of the constant throughout the	cross section of the empty bed i then the minimum height of the (D) 1.0 (D) 1.29 pe wheat thresher operating at a . The minimum net engine powe
Q.26 Q.27	fluidized using air 0.45 m^2 and voida fluidized bed, in m (A) 7.4 to Q. 55 carry tw The value of $\int_{0}^{\pi/2} co$ (A) 0.95 A tractor power ta cylinder speed of 3 required, in kW is (A) 13 A border strip of 8 of the soil is 25 m depth of the advar	age at minimum fluidiz is (B) 5.4 vo marks each. os <i>x dx</i> using trapezoida (B) 1.00 ake-off (PTO) driven s 540 rpm requires a torq (B) 16 \times 250 m is being irrigat m h ⁻¹ (assumed to be concing sheet of water over	c) 2.7 (C) 2.7 I rule with two equal in (C) 1.22 tationary peg tooth typue of 250 Nm at PTO. (C) 18 ted by a border stream operation of the constant throughout the	cross section of the empty bed i then the minimum height of the (D) 1.0 (D) 1.0 (D) 1.29 pe wheat thresher operating at a (D) 21 of 50 lps. The infiltration capacity period of irrigation). The average
Q.26	fluidized using air 0.45 m^2 and voida fluidized bed, in m (A) 7.4 to Q. 55 carry tw The value of $\int_{0}^{\pi/2} co$ (A) 0.95 A tractor power ta cylinder speed of 3 required, in kW is (A) 13 A border strip of 8 of the soil is 25 m depth of the advar border strip, in min (A) 16.7 Decimal reduction 125 °C, respective	age at minimum fluidiz is (B) 5.4 vo marks each. os <i>x dx</i> using trapezoida (B) 1.00 (B) 1.00 ake-off (PTO) driven s 540 rpm requires a torq (B) 16 × 250 m is being irrigat m h ⁻¹ (assumed to be concing sheet of water over nutes, will be (B) 25.7 times for <i>Bacillus sub</i>	 c) 2.7 (C) 2.7 l rule with two equal in (C) 1.22 tationary peg tooth type of 250 Nm at PTO. (C) 18 ted by a border stream of constant throughout the er the land is 70 mm. (C) 54.7 otilis are 37 s and 12 e, in °C, necessary to 	 cross section of the empty bed i then the minimum height of the (D) 1.0 (D) 1.0 tervals is (D) 1.29 pe wheat thresher operating at a Distribution of the minimum net engine power (D) 21 of 50 lps. The infiltration capacity period of irrigation). The average The time required to irrigate the formula of the time required to irrigate the formula of the minimum net engine the time required to irrigate the formula of the time required to irrigate the formula of the minimum net engine the formula of the time required to irrigate the formula of the time required to irrigate the formula of the minimum net engine the formula of the time required to irrigate the tirrigate ti

www.StudentBounty.com Homework Help & Pastpapers


N mm⁻² under uniform wear conditions is

(A) 0.13

- (B) 0.17 (C) 0.25 (D) 0.51
- Q.38 A regime channel carrying a discharge of 25 m³ s⁻¹ is designed using Lacey's regime theory. The side slope of the channel is $\frac{1}{2}$ H : 1 V, and Lacey's silt factor is unity. The bottom width and depth of flow in the channel, in m, respectively are

(A) 20.26, 1.38 (B) 20.26, 1.56 (C) 23.75, 1.56 (D) 32.78, 1.56

www.StudentBounty.com

If the permeability of soil M is 3×10^{-4} mm s⁻¹, the permeability of soil N, in mm s⁻¹, will be

(A) 4×10^{-4} (B) 3×10^{-4} (C) 2.5×10^{-5} (D) 1.5×10^{-5}

- Q.40 A trapezoidal canal, having a bottom width of 5.0 m and a side slope of 1 H : 1 V, is carrying a discharge of $20 \text{ m}^3 \text{ s}^{-1}$. The critical depth, in m, is
 - (A) 1.09 (B) 1.18 (C) 2.12 (D) 2.62
- Q.41 A 200 mm well fully penetrates a confined aquifer. After a long period of pumping at a rate of 1400 litres per minute, the drawdowns in the observation wells located at 25 m and 40 m from the pumping well are found to be 2.6 m and 1.9 m, respectively. The transmissivity of the aquifer in $m^2 day^{-1}$ is
 - (A) 190 (B) 198 (C) 206 (D) 215
- Q.42 Tile drains have to be installed in an agricultural land having soil permeability of 2.3×10^{-3} mm s⁻¹. An impermeable stratum exists at 3.2 m below the land surface, and it is desired to keep the water level at least 1.0 m below the land surface. The average discharge of the drainage system is 2.0 mm day⁻¹. If the tile drains are planned to be placed at 1.5 m below the land surface, the drain spacing in m, assuming the equivalent depth to be the same as the tile depth, is

(A) 10.6

5 (B) 12.4 (C) 13.9

Q.43 It is proposed to construct bench terraces on a 10% hill slope. If the batter slope is $\frac{1}{2}$ H : 1 V, the percentage area that will be lost for cultivation due to bench terracing is

(D) 19.7

Q.44 Air at 70 °C and 0.015 humidity ratio is cooled adiabatically by spraying water. The final temperature of the air is 55 °C. Specific heat capacities of dry air and water vapour are 1.005 and 1.88 kJ kg⁻¹ K⁻¹, respectively and latent heat of vapourization of water at 0 °C is 2501.7 kJ kg⁻¹. The absolute humidity of the outlet air, in kg water vapour per kg dry air is

(A) 0.017 (B) 0.019 (C) 0.021 (D) 0.023

www.StudentBounty.com

- StudentBounty.com AGRIC 2012 Final mass flow rate of osmotically dehydrated cherries after finish drying from Q.45 moisture content to 11.5% wet basis moisture content is 5000 kg per hour. The dryer effective 70%, latent heat of vapourization is 2345 kJ kg⁻¹, specific heat of air is 1.005 kJ kg⁻¹ K temperature is 50 °C and the specific volume of ambient air at 25 °C is 0.866 m³ kg necessary air flow requirement for the drying system in m³ min⁻¹ is (A) 477 (B) 587 (C) 625 (D) 702 A single effect vacuum evaporator has 100 tubes of 25 mm diameter. One thousand kg feed of Q.46 milk per hour with 15% TS is concentrated to 20% TS in the evaporator. Film heat transfer coefficients on either sides of the tube are 5000 and 800 W $m^{-2} K^{-1}$. Thermal conductivity of 1.5 mm thick SS tubes is 15 W m^{-1} K⁻¹. Latent heat of vapourization under vacuum is
 - is (D) 3.17
 - (C) 2.56 (A) 1.36 (B) 2.13
- **O**.47 One thousand units of mixed fruit bar, each weighing 100 g with a surface area of 0.01 m², are frozen from 70 °C molten mass condition to -20 °C frozen storage condition within 3 hours. The specific heat capacity values of the bar are 3.6 kJ kg $^{-1}$ K $^{-1}$ and 1.97 kJ kg $^{-1}$ K $^{-1}$ before and after freezing point (0 °C) respectively. If the latent heat of crystallization is 250 kJ kg^{-1} , the cooling capacity of the refrigeration unit required in tons of refrigeration is

1.66

(D) 4.32

2309 kJ kg⁻¹. For 10 °C temperature difference across the tube wall, the height of each tube, in m

(A) 0.77 (B) 1.43

Common Data Questions

Common Data for Questions 48 and 49:

A diesel engine running in dual fuel mode with diesel as pilot fuel and producer gas as primary fuel produces 3.5 kW at rated engine speed and is coupled directly to a generator for producing electricity. The amount of diesel and producer gas consumed per hour is 460 ml and 12.5 m³, respectively.

- Q.48 Assuming calorific value of diesel and producer gas as 35280 and 3.97 MJ m⁻³, respectively, the brake thermal efficiency of the engine in percentage is
 - (B) 19.13 (A) 17.19 (C) 22.79 (D) 25.32
- If generator efficiency is 90%, the maximum electricity produced, in kW is Q.49

(A) 2.85 (B) 3.00 (C) 3.15 (D) 3.50

Common Data for Questions 50 and 51:

The hourly discharge observations at the mouth of a watershed due to 2 cm excess rainfall during 0 to 1 h and 3 cm excess rainfall during 1 to 2 h are given in the table below. Assume a constant base flow of $1 \text{ m}^3 \text{ s}^{-1}$

Time (h)	0	1	2	3	4	5	6
Discharge (m ³ s ⁻¹)	1	7	26	37	27	13	1

The area of the watershed, in km² is Q.50

(A) 7.56 (B) 8.24	(C) 8.35	(D) 8.86
-------------------	----------	----------

- The peak of 1 h unit hydrograph in $m^3 s^{-1}$ for the watershed and its time of occurrence in h, Q.51 respectively are
 - (B) 7, 2 (D) 9, 1 (A) 6, 1 (C) 8, 2

www.StudentBounty.com

				2	
2012				AGRICA -	AG
Linke	d Answer Ques	stions		ITHE	
Staten	nent for Linked An	swer Questions 52 and 5	53:	04	3.
power row to	red from a ground o row spacing of	wheel of diameter 490	mm. The desired plant	AGRICE er revolution of the metering dis population is 44800 per ha with The planter is to be operated a	a at
Q.52	The angular spee	d of ground wheel in rpr	n is		
	(A) 20.3	(B) 24.6	(C) 28.3	(D) 32.6	
Q.53	The angular spee is	d ratio of metering disc	to ground wheel for obta	ining the desired plant population	n
	(A) 0.125:1	(B) 0.150:1	(C) 0.225:1	(D) 0.250:1	
Staten	nent for Linked An	swer Questions 54 and 5	55:	11 10	
	ompressor with bor	Specific volume of the e diameters of 40 mm ea ate of the refrigerant in k	ach runs at 1440 rpm.	action temperature is 0.15 m ³ kg ⁻	•
	(A) 1.634	(B) 1.090	(C) 0.813	(D) 0.240	
Q.55	The compressor s	stroke length in mm is	A (TT)	<	
	(A) 16.8	(B) 33.7 END OF THE	(C) 50.5	(D) 67.4 PER	

Q. 56 – Q. 60 carry one mark each.

StudentBounty.com 0.56 Choose the most appropriate alternative from the options given below to complete the following sentence:

I _____ to have bought a diamond ring.

- (A) have a liking (B) should have liked (C) would like (D) may like
- Q.57 Choose the most appropriate alternative from the options given below to complete the followi sentence:

Food prices ____ again this month.

(A) have raised (B) have been raising (C) have been rising (D) have arose

Choose the most appropriate alternative from the options given below to complete the following Q.58 sentence:

The administrators went on to implement yet another unreasonable measure, arguing that the measures were already _____ and one more would hardly make a difference.

(B) utopian (A) reflective

(C) luxuriant

(D) unpopular

0.59 Choose the most appropriate alternative from the options given below to complete the following sentence:

To those of us who had always thought him timid, his ____ came as a surprise.

(A) intrepidity (B) inevitability ((C) inability	(D) inertness
-------------------	--------------------	---------------	---------------

The arithmetic mean of five different natural numbers is 12. The largest possible value among the Q.60 numbers is

(A) 12

(C) 50 (D) 60

Q. 61 - Q. 65 carry two marks each.

(B) 40

Q.61 Two policemen, A and B, fire once each at the same time at an escaping convict. The probability that A hits the convict is three times the probability that B hits the convict. If the probability of the convict not getting injured is 0.5, the probability that B hits the convict is

(B) 0.22 (C) 0.33 (D) 0.40) 0.14

GENERAL APTITU

(D) 4

StudentBounty.com Q.62 The total runs scored by four cricketers P, Q, R, and S in years 2009 and 2010 are give following table:

Player	2009	2010
Р	802	1008
Q	765	912
R	429	619
S	501	701

The player with the lowest percentage increase in total runs is

- (A) P (C) R (D) S (B) Q
- Q.63 If a prime number on division by 4 gives a remainder of 1, then that number can be expres
 - (A) sum of squares of two natural numbers
 - (B) sum of cubes of two natural numbers
 - (C) sum of square roots of two natural numbers
 - (D) sum of cube roots of two natural numbers
- Q.64 Two points (4, p) and (0, q) lie on a straight line having a slope of 3/4. The value of (p)-q) is

(A) -3 **(B)** 0

Q.65 In the early nineteenth century, theories of social evolution were inspired less by Biology than by the conviction of social scientists that there was a growing improvement in social institutions. Progress was taken for granted and social scientists attempted to discover its laws and phases.

(C) 3

Which one of the following inferences may be drawn with the greatest accuracy from the above passage?

Social scientists

- (A) did not question that progress was a fact
- (B) did not approve of Biology.
- (C) framed the laws of progress.
- (D) emphasized Biology over Social Sciences.

END OF THE QUESTION PAPER

2012

GATE 2012 - Answer Key - Paper : AG

Paper	Question no.	Кеу
AG	1	С
AG	2	D
AG	3	В
AG	4	С
AG	5	С
AG	6	С
AG	7	С
AG	8	D
AG	9	С
AG	10	В
AG	11	A
AG	12	В
AG	13	D
AG	14	А
AG	15	А
AG	16	С
AG	17	D
AG	18	С
AG	19	С
AG	20	А
AG	21	А
AG	22	C 🔦
AG	23	A
AG	24	В
AG	25	С
AG	26	0.94 to 0.96
AG	27	15 to 17
AG	28 🚽	52 to 57
AG	29	10 to 11
AG	30	41 to 42
AG	31	C
AG	32	
AG	33	D
AG	34	В
AG	35	D

		Ste	
(ey - Pape	r : AG	aente.	ounty.com
Paper	Question no.	Кеу	The
AG	36	В	2
AG	37	С	.02
AG	38	В	2
AG	39	С	
AG	40	A	
AG	41	D	
AG	42	Marks to All)
AG	43	В	
AG	44	С	
AG	45	Marks to All	
AG	46	D	
AG	47	В	
AG	48	В	
AG	49	С	
AG	50	A	
AG	51	С	
AG	52	В	
AG	53	A	
AG	54	С	
AG	55	В	
AG	56	С	
AG	57	С	
AG	58	D	
AG	59	A	
AG	60	С	
AG	61	A	
AG	62	В	
AG	63	A	
AG	64	С	
AG	65	A	