2	Hide
	CHEBOU
Answer Sheet No	- 12
Sig. of Invigilator	- COM
SSC-II	

MATHEMATICS HSSC-II

SECTION - A (Marks 20)

Time allowed: 25 Minutes

NOTE:- Section—A is compulsory and comprises pages 1–2. All parts of this section are to be answered on the question paper itself. It should be completed in the first 25 minutes and handed over to the Centre Superintendent. Deleting/overwriting is not allowed. Do not use lead pencil.

. 1	Circle	the co	rrect option i.e	e. A/B/0	C / D. Each pa	rt carries	one mark.		
	(i)	The t	erm	wa	s recognized b	y a Germ	nan Mathematicia	n Leibniz	to describe the
			ndence of one						
		A.	Limit			B.	Function		
		C.	Domain			D.	Range		
	(ii)	lim	$\frac{\tan x}{}=$						
	(11)	$x \rightarrow 0$	x -						
		A.	0			B.	-1		
		C.	1			D.	None of these		
	(iii)	$y = \epsilon$	2x is called a/a	n	fund	ction.			
		A.	Linear			B.	Quadratic		
		C.	Rational			D.	Exponential		
	(iv)	The n	ninimum value	of a function	on occurs when	n its deriv	vative is		
		Α.	Equal to zero)		B.	Greater than a	zero	
		C.	Less than ze	ro		D.	Equal to one		
	(v)	The s	lope of the tang	ent line to	the graph of	f at $(x,$	f(x)) is		
		A.	f'(x)	B.	f(x)	C.	y	D.	x
3	(vi)	The d	lerivative of $6x^2$	$w.r.t. x^2$	is				
		Α.	$18x^{2}$				$9x^2$	D.	9x
	(vii)	$\frac{d}{dx}(a$	n ^{ℓnx}) =						
			$a^{\ell nx}.\ell nx$			C.	$\frac{a^{\ell nx}.\ell na}{x}$	D.	None of these
((viii)		$\frac{(x)}{(x)}dx = $						
		A.	$\frac{d}{dx}[\ell nf(x)]$	+ c		В.	lnf(x) + c		
		C.	$\frac{d}{dx} \Big[\ln f(x) \Big]$ $\ln f(x) + x + \frac{d}{dx} \Big[\ln f(x) \Big]$	- C		D.	$-\ell n f(x) + c$		
((ix)	∫(ℓnx	$\left(-\frac{1}{x} dx = \underline{} \right)$						
		Α.	1000	B.	$(\ell nx)^2 + c$	C.	$\frac{\ell nx}{x^2} + c$	D.	None of these
((x)	Jcos	ec x dx =						
		Α.	$\ell n \sec x + \tan x$	$\ln x + c$		B.	$\ell n \cos ec x +$	$\cot x \mid + a$	2
		C.	$\ell n \cos ec x -$	$-\cot x$ +	С	D.	-cos ec x.cot	x+c	

(xi)	The c	entroid of a ΔABC divides each media	an in the r	atio
	A.	1:2	B.	1:1
	C.	1:3	D.	2:1
(xii)	If "P"	divides the line AB in the ratio 3:3, then	coordina	tes of "P" are
	Α.	(2 2)		$\left(\frac{x_1+x_2}{3}, \frac{y_1+y_2}{3}\right)$
	C.	$\left(\frac{3x_1+3x_2}{2}, \frac{3y_1+3y_2}{2}\right)$	D.	$\left(\frac{x_1+y_1}{2}, \frac{x_2+y_2}{2}\right)$
(xiii)	The s	lope of a vertical line is	-	
	A.	00	B.	1
	C.	0	D.	2
(xiv)	If slop	be of \overline{AB} = slope of \overline{BC} , then points A	, B, C are	
	A.	Non-collinear	B.	Coplanar
	C.	Non-coplanar	D.	Collinear
(xv)	The f	easible solution which maximizes or mi	nimizes th	ne objective function is called the
	A.	Feasible solution	B.	Simple solution
	C.	Optimal solution	D.	None of these
(xvi)	Radiu	is of a circle is given by		
	A.	$\sqrt{g^2 + f^2 + c}$	В.	$\sqrt{g^2 + f^2 - c}$
	C.	$\sqrt{g^2-f^2-c}$	D.	$\sqrt{g^2 - f^2 + c}$
(xvii)	Direc	tices of ellipse $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1, a > b$ are_	PHYMANIA	The second second second second
	A.	$x = \pm \frac{c}{a^2}$	В.	$y = \pm \frac{c}{e^2}$
	C.	$x = \pm c$	D.	$y = \pm c$
(xviii)	Verte	x of parabola $(y-2)^2 = 10(x+3)$ is _	100	
	A.	(0,0)	В.	(-2,3)
	C.	(2, -3)	D.	(3,-2)
(xix)	If $\underline{a} \times$	$\underline{b} = 0$ and $\underline{a}.\underline{b} = 0$, then		
	A.	\underline{a} and \underline{b} are parallel	B.	\underline{a} and \underline{b} are perpendicular
	C.	$\underline{\alpha} \neq 0, b \neq 0$	D.	Either $\underline{a} = 0$ or $\underline{b} = 0$
(xx)	If P(2	(3) and Q (6, $-$ 2), then \overrightarrow{PQ} =		
	Α.	$4\hat{i}-5\hat{j}$	B.	$-4\hat{i}+5\hat{j}$
	C.	$4\hat{i} + 5\hat{j}$	D.	$5\hat{i}-4\hat{j}$

For Examiner's use only:

Total Marks:

Marks Obtained:

---- 2HA 1211 (L) ----

Page 2 of 2 (Math)

Time allowed: 2:35 Hours

ne allowed: 2:35 Hours Total Marks Sections B and C.

NOTE:- Attempt any ten parts from Section 'B' and any five questions from Section 'C' on the separately provided answer book. Use supplementary answer sheet i.e. Sheet-B if required. Write your answers neatly and legibly.

SECTION - B (Marks 40)

Q. 2 Attempt any TEN parts. All parts carry equal marks.

 $(10 \times 4 = 40)$

(i) Determine whether the given function " f " is Even or Odd: $f(x) = x^{2/3} + 6$

(ii) Simplify:
$$\lim_{x \to 0} \frac{e^{1/x} - 1}{e^{1/x} + 1}, x > 0$$

(iii) If
$$y = \sqrt{x} - \frac{1}{\sqrt{x}}$$
, prove that $2x\frac{dy}{dx} + y = 2\sqrt{x}$

(iv) Find
$$\frac{dy}{dx}$$
 if $x = y$. $\sin y$

(v) Find the extreme values for $f(x) = 5 + 3x - x^3$

(vi) Evaluate:
$$\int \sin^2 x \ dx$$

(vii) Evaluate:
$$\int x^3 . \ell n x \, dx$$

(viii) Evaluate:
$$\int_{1}^{\sqrt{5}} \sqrt{(2t-1)^3} dt$$

(ix) Find the equation of a line through (-4, -6) and perpendicular to a line having slope $\frac{-3}{2}$

(x) The vertices of a triangle are A(-2,3), B(-4,1) and C(3,5). Find coordinates of the centroid. (xi) Find the centre and radius of the circle

(xi) Find the centre and radius of the circle $5x^2 + 5y^2 + 14x + 12y - 10 = 0$

(xii) Show that the circles $x^2 + y^2 + 2x - 2y - 7 = 0$ and $x^2 + y^2 - 6x + 4y + 9 = 0$ touch externally.

(xiii) Find Focus and Vertex of the parabola:

 $(x-1)^2 = 8(y+2)$

(xiv) If $\underline{v} = 3\hat{i} - 2\hat{j} + 2\hat{k}$ and $\underline{w} = 5\hat{i} - \hat{j} + 3\hat{k}$, then find $|3\underline{v} + \underline{w}|$

SECTION - C (Marks 40)

Note:- Attempt any FIVE questions. All questions carry equal marks.

 $(5 \times 8 = 40)$

Q. 3 Prove that $\lim_{x\to 0} \frac{a^x - 1}{x} = \log_e a$

Q. 4 Show that
$$\frac{dy}{dx} = \frac{y}{x}$$
 if $\frac{y}{x} = \tan^{-1} \frac{x}{y}$

Q. 5 Evaluate:
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{\cos x}{\sin x (2 + \sin x)} dx$$

Q. 6 The points (4, -2), (-2,4) and (5,5) are vertices of a triangle. Find In-centre of the triangle.

Q. 7 Graph the feasible region of the system of linear inequalities and find the corner points: $5x+7y \le 35$, $x-2y \le 4$, $x \ge 0$, $y \ge 0$

Q. 8 Find the centre, foci, eccentricity and directices of the ellipse whose equation is: $25x^2 + 9v^2 = 225$

Q. 9 Prove by vector method that:

 $\sin(\alpha + \beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta$

	Stude	
	CHECHINA	
answer Sheet No	12	
ig. of Invigilator,	, com	-
SSC-II		

MATHEMATICS HSSC-II

SECTION - A (Marks 20)

Time allowed: 25 Minutes

NOTE:- Section-A is compulsory and comprises pages 1-2. All parts of this section are to be answered on the question paper itself. It should be completed in the first 25 minutes and handed over to the Centre Superintendent. Deleting/overwriting is not allowed. Do not use lead pencil.

Q. 1	Circle	the c	orrect option i.	e. A/B/0	C / D. Each pa	art carries	one mark.		
	(i)		ss Mathematicia					he statem	ent
		" y i	s a function of x	as y=f(x).				
		A.	Euler	В.	Leibniz	C.	Tailor	D.	Cachy
	(ii)	If f	$(x) = e^x$, then f	$^{-1}(x) = _{}$					
		Α.	e^x	В.	$\sin x$	C.	cos x	D.	ℓnx
	(iii)	Ranç A.	ge of $\cot x$ is			В.	R		
		C.	(0,∞-)			D.	[-1,1]		
	(iv)	lim	$(1+\frac{4}{n})^n = \underline{\hspace{1cm}}$						
		A.	е			В.	e''		
			e ⁴			D.	$e^{1/4}$		
	(v)	$\frac{1}{dx}$	3 ^{5x}) =						
		Α.	$3^{5x} \ln 3$			B.	5.3 ^{5x}		
		C.	$5.3^{5x} \ln 3$			D.	$3^{5x} \ln e$		
	(vi)		+4y+7=0,	then $\frac{dy}{dx} =$					
		Α.	$\frac{-3}{7}$ $\frac{-3-7}{4}$			B.	$\begin{array}{r} -3 \\ \hline 4 \\ \hline -4 \\ \hline \end{array}$		
		C.	-3 - 7			D.	-4		
		d	4			D.	3		
	(vii)	$\frac{d}{dx}$ (s	$\sin\sqrt{x}$) =		_				
		Α.	$\cos \sqrt{x}$	B.	$\frac{\cos\sqrt{x}}{\sqrt{x}}$	C.	$\cos\sqrt{x}.2\sqrt{x}$	x D.	$\frac{\cos\sqrt{x}}{2\sqrt{x}}$
	(viii)	$\int \frac{x}{x+}$	$\frac{1}{2}dx = $						
		Α.	$x-2\ell n(x+$			B.	$\ell n(x+2) +$	c	
		C.	$2\ell n(x+2)$	+ C		D.	$x + 2\ell n(x +$	-2)+c	
	(ix)	∫tan	$^{2} x dx =$						
		Α.	$\tan x - x + c$			B.	$\tan x + x + a$	c	
		C.	$2 \tan x \cdot \sec^2$	x + c		D.	sec^2x-1+c	c	

Student Bounty com DO NOT WRITE ANYTHING HERE

	Α.	$e^{2x}+c$	В.	$2e^{2x} + c$
	C.	$2xe^{2x}+c$	D.	$\frac{2e^{2x}+c}{\frac{e^{2x}}{2}+c}$
21	la see	local seis (- NII II : II I		2
a)	A.	dered pair (x, y) ," y " is called_ Abscissa	-	_
			В.	Ordinate
225	C.	Domain	D.	Horizontal distance
di)	Slope	e- Intercept form of equation of a	straight line is	- V
	Α.	y - mx + c = 0	В.	$y - y_1 = m(x - x_1)$
	C.	y = mx + c	D.	$\frac{x}{a} + \frac{y}{b} = 1$
iii)	Dista	nce from the point P (6, -1) to the	ne line 6x - 4 v l	The state of the s
	A.	49	В.	√52
	C.	$\frac{49}{\sqrt{52}}$	D.	10
(vi	Inequ	alities are expressed by	symbols.	
	A.	One	В.	Two
	C.	Four	D.	Three
V)	Parar	metric equations of a circle are_		
	A.	$x = a\cos\theta, y = b\sin\theta$	B.	$x = r\cos\theta, y = b\sin\theta$
	C.	$x = a \tan \theta, y = b \sec \theta$	D.	$x = r\cos\theta, y = r\sin\theta$
cvi)	If rad	ius of a circle is zero, then the cir Point circle	rcle is called a/an B.	Null circle
	C.	Circum circle	D.	In-circle
(vii)	Leng	th of latusrectum of an Ellipse is_		III Oli Oli O
		are a second of all Empor Is		
	Δ	$2b^2$	P	
	7.	a	В.	4a
	C.	2 <i>b</i>	D	4
	0.	a	D.	4ax
(Viii)	If vec	tors $\underline{a},\underline{b}$ and \underline{c} are three position	on vectors of a tri	angle, then
	A.	$\underline{a} - \underline{b} - \underline{c} = 0$	B.	$\underline{a} = \underline{b} = \underline{c}$
	C.	$\underline{a} = \underline{b} - \underline{c}$	D.	$\underline{a} + \underline{b} + \underline{c} = 0$
kix)	Whic	h of the following triples can be t	he direction angle	es of a single vector?
	A.	$30^{\circ}, 45^{\circ}, 60^{\circ}$	В.	$45^{\circ}, 60^{\circ}, 60^{\circ}$
	C.	45°, 45°, 60°	D.	$60^{\circ}, 60^{\circ}, 60^{\circ}$
(x)	In cro	oss product, $\underline{u} \times \underline{u} = \underline{}$		
	A.	u^2	В.	2u
	C.	0	D.	None of these
or Ex	amine	r's use only:		
			Total	Marks:
			ISIGI	IVIALKS:

Marks Obtained:

-- 2HA 1211 (ON) ----Page 2 of 2 (Math)

SECTION - B (Marks 40)

Attempt any TEN parts. All parts carry equal marks.

 $(10 \times 4 = 40)$

- Prove the identity $sech^2 x = 1 \tanh^2 x$
- Evaluate $\lim \frac{\tan \theta \sin \theta}{}$ (ii)
- Find $\frac{dy}{dx}$ if $4x^2 + 2hyx + by^2 + 2gx + 2fy + c = 0$ (iii)
- If $\tan y(1 + \tan x) = 1 \tan x$, show that $\frac{dy}{dx} = -1$ (iv)
- Find f'(x) if $f(x) = \ln(\sqrt{e^{2x} + e^{-2x}})$ (v)
- Evaluate $\int \cos 3x \cdot \sin 2x \, dx$ (vi)
- (vii) Evaluate $\int (x+|x|)dx$
- Solve the differential equation $\frac{dy}{dx} = \frac{y}{x^2}$
- Find the point three-fifth of the way along the line segment from A(-5.8) to B(5.3). (ix)
- Determine the value of "p" such that lines 2x-3y-1=0, 3x-y-5=0 and 3x+py+8=0(x) meet at a point.
- (xi) Find an equation of the circle with ends of diameter at (-3,2) and (5,-6)
- (xii) Write an equation of parabola if Directrix x = -2 and Focus (2,2)
- (xiii) Find α so that $|\alpha \hat{i} + (\alpha + 1)\hat{j} + 2\hat{k}| = 3$
- (xiv) If $\underline{a} + \underline{b} + \underline{c} = 0$, then prove that $\underline{a} \times \underline{b} = \underline{b} \times \underline{c} = \underline{c} \times \underline{a}$

SECTION - C (Marks 40)

Note:-Attempt any FIVE questions. All questions carry equal marks.

 $(5 \times 8 = 40)$

- 0.3 For the real valued function f defined below find:
 - $f^{-1}(x)$ $f(x) = \frac{2x+1}{x-1}$
- b. $f^{-1}(-1)$ and verify that $f(f^{-1}(x)) = x$
- Show that $y = \frac{\ell nx}{x}$ has maximum value at x = eQ. 4
- Q. 5 Evaluate $\int e^{-x} \cdot \sin 2x \, dx$
- The average entry test score of engineering candidates was 592 in the year 1998, while the score was 564 in 2002. Assuming that the relationship between time and score is linear, find the average score for 2006.
- Q. 7 Maximize f(x, y) = 2x + 5y subject to the constraints $2y - x \le 8$; $x - y \le 4$; $x \ge 0$; $y \ge 0$
- A cornet has a parabolic orbit with the Earth at the focus. When comet is 150,000 km from the Earth, the line joining the comet and the Earth makes an angle of 30° with the axis of the parabola. How close will the comet come to the Earth?
- If $a = 3\hat{i} \hat{j} 4\hat{k}$, Q. 9
- $\underline{b} = -2\hat{i} 4\hat{j} 3\hat{k}$ and $\underline{c} = \hat{i} + 2\hat{j} \hat{k}$

Find a unit vector parallel to $3\underline{a} - 2\underline{b} + 4c$