

Answer Sheet No. Sig. of Invigilator.

MATHEMATICS HSSC-I

SECTION - A (Marks 20)

Time allowed: 25 Minutes

NOTE:- Section-A is compulsory and comprises pages 1-2. All parts of this section are to be answered

1 Circle	le the correct option i.e. A / B / C / D. Each part carries one mark.										
(i)	$i^{18} =$										
	A.	3	В.	2	C.	1	D.	-1			
(ii)	$\frac{4}{1+i}$	is	- 4								
		1+i	В.	1-i	C.	2(1+i)	D.	2(1-i)			
(iii)	(x^C)	$\cup y^C$) =									
	Α.	$x \cap y$	В.	$x \cup y$	C.	$(X \cap Y)^C$	D.	None of these			
(iv)	If	$\begin{bmatrix} 5 & 2 \\ -2 & 1 \end{bmatrix} x =$	-1 5 12 3	then X=	Led Take						
						(0.0)		()			
	Α.	$\begin{pmatrix} 1 & -3 \\ 2 & -1 \end{pmatrix}$	B.	$\begin{pmatrix} 1 & 3 \\ 2 & -1 \end{pmatrix}$	C.	$\begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix}$	D.	$\begin{pmatrix} 2 & 3 \\ -1 & -1 \end{pmatrix}$			
(v)	Forv	For what value of m, the roots of the equation $(m+1)x^2+2(m+3)x+m+8=0$ are equal?									
	Α.	$\frac{-1}{2}$	В.	$\frac{2}{3}$	C.	$\frac{-1}{3}$	D.	None of these			
(vi)	If wi	is the cube roo	ts of unity	then a quadra	tic equation	on whose roots	are 2 ω a	and $2\omega^2$ is			
		$x^{2} + 2x + 4$				$x^2 - 2x + 4$					
	C.	$x^{2} + x + 4$	= 0		D.	$x^2 + 2x - 4$	= 0				
(vii)	If deg	gree of P(x)=3	and degre	e of Q(x)=4, th	en $\frac{P(x)}{Q(x)}$ w	vill be	_				
	A.	Proper Rati	onal Fract	ion		B. Impi	oper Rati	onal Fraction			
	C.	Polynomial				D. Non	e of these				
(viii)	If a,b,c are in G.P and a>0,b>0,c>0, then the reciprocals of a,b,c form										
	A.	A.P	В.	G.P	C.	H.P	D.	None of these			
(ix)	If $\frac{1}{a}$	$\frac{1}{b}$, $\frac{1}{c}$ are in A.P	then the co	ommon differer	nce is						
	A.	a – c 2ac	В.	2ac a - c	C.	$\frac{a+c}{2ac}$	D.	2ac a + c			
(x)							bility that				
	A card is drawn from a pack of 52 cards at random. What is the probability that it is either a heart or a king?										
	Α.	4	B.	1 :	C.	9	D.	2			

DO NOT WRITE ANYTHING HERE

(xi)	The r	niddle terms in t	he expa	nsion of $\left(\frac{x}{2} + \frac{2}{x^2}\right)$	will be	9		
	A.	5 th term	В.	7 th term	C.	8 th term	D.	6 th term
(xii)	Circu	lar measure of t	ne angle	between the ha	nds of a	watch at a 4'O o	lock is _	
	Α.	$\frac{\pi}{6}$ radians	В.	$\frac{2\pi}{3}$ radians	C.	$\frac{3\pi}{4}$ radians	D.	$\frac{\pi}{3}$ radians
(xiii)	If tan	$\theta = \frac{2}{5}$ and $0 < \theta < \frac{7}{2}$	then 4	$\frac{\cos\theta + 3\sin\theta}{\cos\theta - \sin\theta} = \underline{\hspace{1cm}}$				
	Α.	14 3	В.	26 3	C.	13 7	D.	None of the
(xiv)	The a	angles 90°±θ,18	0°±θ, 27	$0^{\circ} \pm \theta$, $360^{\circ} \pm \theta$ are	the	angle.		
	A.	Composite	В.	Half	C.	Quadrantal	D.	Allied
(xv)	The p	period of $3\cos\frac{x}{5}$	is					
	A.	5π	В.	2π	C.	10π	D.	6π
(xvi)	The i	n-radius r of a tr	angle is	given by				
	A.	sΔ	B.	$\frac{\Delta}{s}$	C.	$\frac{s}{\Delta}$	D.	None of the
(xvii)	sin	$\cos^{-1}\frac{\sqrt{3}}{2}$ =						
	A.	0	В.	$\frac{1}{2}$	C.	1	D.	$\frac{\sqrt{3}}{2}$
				2		6		2
(xviii)	If α	and eta are the i	oots of	the equation x ²	- (p - 1)x	+ c = 0 then (1+c	z)(1+β)=	
	A	1-c	В.	c-2	C.	-с	D.	None of the
(xix)	Which	h term of 64,60,						46
	A.	16 th	B.	17 th	C.	14 th	D.	15 th
(xx)	Multip	olicative inverse	of $1 - 2$	<i>i</i> is=				
	A.	$\frac{1-2i}{5}$	В.	$\frac{1+2i}{5}$	Ç.	$\frac{1+2i}{4}$	D.	None of the
For Ex	amine	r's use only:		-	- 1		No.	
					Tota	Marks:		20
						The second secon		

Page 2 of 2(Math)

SECTION - B (Marks 40)

Q. 2 Attempt any TEN parts. All parts carry equal marks.

 $(10 \times 4 = 40)$

(i) Simplify
$$\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)^3$$

(ii) Without expansion verify that
$$\begin{pmatrix}
1 & a^2 & \frac{a}{bc} \\
1 & b^2 & \frac{b}{ca} \\
1 & c^2 & \frac{c}{ab}
\end{pmatrix} = 0$$

- (iii) Find the condition that $\frac{a}{x-a} + \frac{b}{x-b} = 5$ may have roots equal in magnitude but opposite in signs.
- (iv) Find the sum of 20 terms of the series whose rth term is 3r+1.
- (v) Resolve into Partial Fraction $\frac{9x-7}{(x^2+1)(x+3)}$
- (vi) Show that ${}^{16}C_{11} + {}^{16}C_{10} = {}^{17}C_{11}$
- (vii) Find the term independent of x in the expansion of $\left(\sqrt{x} + \frac{1}{2x^2}\right)^{10}$
- (viii) If $\cot \theta = \frac{m^2 1}{2m}$ and $0 < \theta < \frac{\pi}{2}$ find the value of remaining trigonometric ratios.
- (ix) If $\sin \alpha = \frac{12}{13}$, then find the values of $\sin 2\alpha$ and $\cos 2\alpha$, where $0 < \alpha < \frac{\pi}{2}$
- Draw the graph of $y = \tan x$, $x \in [-\pi, \pi]$ Graph paper should be given to the candidates.
- (xi) Solve the triangle ABC if $\alpha = 35^{\circ} 17'$, $\beta = 45^{\circ} 13'$, b = 421
- (xii) Show that $\cos^{-1}(-x) = \pi \cos^{-1} x$
- (xiii) Solve 2x y = 4 and $2x^2 4xy y^2 = 6$
- (xiv) Show that the statement $\neg q \land (p \rightarrow q) \rightarrow \neg q$ is a tautology.

SECTION - C (Marks 40)

Note:- Attempt any FIVE questions. All questions carry equal marks.

 $(5 \times 8 = 40)$

- **Q. 3** Prove that $\sqrt{3}$ is an irrational number.
- Q. 4 Find the value of λ for which the system has non-trivial solutions. Also find solution for the value of λ

$$x + y + z = 0$$

$$2x + y - \lambda z = 0$$

$$x + 2y - 2z = 0$$

- Q. 5 Show that roots of the equation (x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0 are real and will be equal only if a=b=c
- Q. 6 If m and n are nearly equal show, that $\left(\frac{5m-2n}{3n}\right)^{\frac{1}{3}} \approx \frac{m}{m+2n} + \frac{n+m}{3n}$
- Q. 7 If α , β , γ are the angles of a triangle ABC, then show that $\cot \frac{\alpha}{2} + \cot \frac{\beta}{2} + \cot \frac{\gamma}{2} = \cot \frac{\alpha}{2}$ $\cot \frac{\beta}{2}$ $\cot \frac{\gamma}{2}$
- **Q. 8** Prove that $r = \frac{\Delta}{s}$ with usual notation. Also show that $r_1 = s \tan \frac{\alpha}{2}$
- **Q. 9** Solve the equation $\sin^2 x + \cos x = 1$

	Auden
Answer Sheet NoSig. of Invigilator	CHUIDENHOUNTS, CO.
SC-I 20)	

MATHEMATICS HSSC-I

SECTION - A (Marks 20)

Time al	lowed:	25	Minutes
---------	--------	----	---------

NOTE:- Section—A is compulsory and comprises pages 1-2. All parts of this section are to be answered on the question paper itself. It should be completed in the first 25 minutes and handed over to the Centre Superintendent. Deleting/overwriting is not allowed. Do not use lead pencil.

Onoi	e the co	rrect option i.e.	A/B/	C / D. Each part	carries	one mark.				
(i)	$i^{20} = $									
1000	Α.		В.	2	C.	1	D.	0		
(ii)	$\frac{2}{1+i}$	=								
	Α.	1+i	В.	1-i	C.	2(1+i)	D.	2(1-i)		
(iii)	If A h	If A has 3 elements, B has 5 elements then maximum numbers of elements in $A \cup B$ is								
	A.	5	B.	3	C.	2	D.	8		
(iv)	If $A = \begin{pmatrix} 1 & -1 \\ a & b \end{pmatrix}$ and $A^2 = I$ then a and b are									
	A.	a = 0 , b = -1	B.	a = 1, b = 0	C.	a = 2, b = 1	D.	a = 3, b = 0		
(v)	For what value of k, the sum of roots of the equation $x^2 + kx + 4 = 0$ is equal to the product of its roots									
	A.	±1	B.	±4	C.	4	D.	-4		
(vi)	If the	If the roots of $x^2 - px + q = 0$ differ by unity then $p^2 - 4q = $								
	Α.	0	В.			2		-1		
(vii)	The ra	The rational fraction $\frac{P(x)}{Q(x)}$, where $Q(x) \neq 0$, is Proper Rational Fraction if								
	Α.	DegP(x) = DegQ(x)			B.	DegP(x) < DegQ(x)				
	C.	DegP(x) > 1	DegQ(x)	D.	None of these	-1	Charles Rendered		
	If a^2,b^2,c^2 are in A.P, then $a+b,c+a,b+c$ are in									
(viii)	If a ² ,b	2,c2 are in A.P. th	ien a + i	b.c+a.b+c a	re in					
(viii)	If a ² ,b	² ,c ² are in A.P, th	nen <i>a</i> + <i>i</i> B.					None of these		
3 /	A.		B.	G.P	C.	H.P		None of these		
3 /	A.	A.P	B.	G.P	C.	H.P		None of these		
3 /	A. If $\frac{1}{k}$, A.	$\frac{1}{2k+1}, \frac{1}{4k-1}$	B. are in H.I B.	G.P P, then the value 2	C. of k is_	H.P	D.	4		
(ix)	A. If $\frac{1}{k}$, A.	A.P $\frac{1}{2k+1}, \frac{1}{4k-1}$ 3 is rolled, what is	B. Ire in H.I B. the prob	G.P P, then the value 2 pability of getting	C. cof k is_ C. a number	H.P	D. D. and gre	4 eater than 2 ?		
(ix)	A. If $\frac{1}{k}$, A. A die	A.P $\frac{1}{2k+1}, \frac{1}{4k-1}$ 3 is rolled, what is	B. B. the prob	G.P P, then the value 2 pability of getting $\frac{1}{3}$	C. cof k is_ C. a number	H.P 1 er which is even	D. D. and gre	4 eater than 2 ?		

(xii)
$$1^o =$$

A.
$$\frac{\pi}{190}$$
 radian

$$\frac{180}{\pi}$$
 radian

$$\frac{\pi}{180}$$
 radian B. $\frac{180}{\pi}$ radian C. $\frac{1}{180\pi}$ radian D. 180π radian

(xiii) If
$$\cos \theta - \frac{\sqrt{3}}{2}$$
 and terminal side of the angle is not in 3rd quadrant then $\sin \theta$ is_____

A.
$$-\frac{1}{2}$$

c.
$$\frac{\sqrt{3}}{2}$$

 $\frac{1}{2}$ C. $\frac{\sqrt{3}}{2}$ D. None of these

(xiv) A reference angle
$$\theta$$
 is always_____

A.
$$0 < \theta < \frac{\pi}{2}$$
 B. $\frac{\pi}{2} < \theta < \pi$ C. $0 < \theta < \pi$ D. None of these

$$\frac{\pi}{2} < \theta < \pi$$

$$0 < \theta < \pi$$

(xv) The period of
$$5\cos\frac{x}{3}$$
 is_____

A.
$$3\pi$$
 B. 2π C. 6π D.

D.
$$\frac{5}{2}$$

A.
$$\frac{\Delta}{s}$$

B.
$$\frac{ab}{4a}$$

C.
$$\frac{c}{2\sin r}$$

D.
$$\frac{1}{2}bc\sin A$$

(xvii)
$$\cos(2\sin^{-1}x) =$$

A.
$$1-2x^2$$
 B. $1+2x^2$ C. $2x^2-1$ D.

(xviii) If the roots of
$$ax^2 + bx + c = 0$$
 are real and unequal then_____

A.
$$b^2 - 4ac < 1$$

A.
$$b^2 - 4ac < 0$$
 B. $b^2 - 4ac > 0$

C.
$$b^2 - 4ac = 0$$

D.
$$b^2 - 4ab = 0$$

(xix)
$$2 + (1-i) + \left(\frac{1}{i}\right) + \dots$$
 is in_____

(xx) If
$$z_1 = 1 + 2i$$
, $z_2 = 2 + i$, then $(z_1 z_2)$ is_____

A.
$$\frac{4-3}{5}$$

For Examiner's use only:

Total Marks:

Marks Obtained:

---- 1HA 1211 (ON) ----

Page 2 of 2(Math)

MATHEMATICS HSSC-I

Time allowed: 2:35 Hours

Total Marks Sections B and C: 80

Student Bounty Com Attempt any ten parts from Section 'B' and any five questions from Section 'C' on the separately provided answer book. Use supplementary answer sheet i.e. Sheet-B if required. Write your answers neatly and legibly.

SECTION - B (Marks 40)

Attempt any TEN parts. All parts carry equal marks. Q. 2

 $(10 \times 4 = 40)$

(i) If
$$z_1=2+i$$
, $z_2=3-2i$, $z_3=1+3i$ then express $\frac{\overline{z_1}\cdot\overline{z_3}}{z_2}$ in the form of $a+bi$

(ii) Find the matrix A if
$$\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} A = \begin{pmatrix} 0 & -3 & 8 \\ 3 & 3 & -7 \end{pmatrix}$$

(iii) If
$$\alpha$$
, β are the roots of $3x^2 - 2x + 4 = 0$, then find the value of $\alpha^3 + \beta^3$

(v) Resolve
$$\frac{x^2+x-1}{(x+2)^3}$$
 into partial fraction.
 (vi) Show that $^{15}C_{11}+^{15}C_{10}=^{16}C_{11}$

(vi) Show that
$${}^{15}C_{11} + {}^{15}C_{10} = {}^{16}C_{11}$$

(vii) Find the sixth term from the end in the expansion of
$$\left(\frac{3}{2}x - \frac{1}{3x}\right)^{11}$$

(viii) Prove that
$$\sqrt{\frac{1-\sin\theta}{1+\sin\theta}} = \sec\theta - \tan\theta$$
; where $\theta \neq (2n+1)\frac{\pi}{2}$, $n \in \mathbb{Z}$

(ix) Express
$$5\sin\theta - 4\cos\theta$$
 in the form $r\sin(\theta + \phi)$ where $0 < \theta < \frac{\pi}{2}$, $0 < \phi < \frac{\pi}{2}$

(xi) Solve the triangle ABC if
$$\gamma = 53^{\circ}$$
, $\alpha = 47^{\circ}$, $b = 125$

(xii) Show that
$$\sin^{-1}(-x) = -\sin^{-1}x$$

(xiii) Solve
$$x + y = 7$$
 and $x^2 - xy + y^2 = 13$

(xiv) Construct the truth table for
$$\sim (p \rightarrow q) \leftrightarrow (p \land \sim q)$$

SECTION - C (Marks 40)

Attempt any FIVE questions. All questions carry equal marks. Note:-

 $(5 \times 8 = 40)$

Q. 3 Prove that
$$\sqrt{3}$$
 is an irrational number.

Q. 4 Find the inverse of the matrix
$$\begin{pmatrix} 1 & 2 & -1 \\ 0 & -1 & 3 \\ 1 & 0 & 2 \end{pmatrix}$$

Q. 5 Solve the equation
$$\sqrt{3x^2 - 5x + 2} + \sqrt{6x^2 - 11x + 5} = \sqrt{5x^2 - 9x + 4}$$

Q. 6 If
$$y = \frac{2}{5} + \frac{1.3}{2!} \left(\frac{2}{5}\right)^2 + \frac{1.3.5}{3!} \left(\frac{2}{5}\right)^3 + \dots$$
 then prove that $y^2 + 2y - 4 = 0$

Q.7 Let
$$\alpha$$
 and β be any two angles (real numbers), then $\cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta$

Q. 8 Prove that
$$abc(\sin \alpha + \sin \beta + \sin \gamma) = 4\Delta s$$

Q.9 Find the solution set of
$$\cos ecx = \sqrt{3} + \cot x$$