mathcity.org

Merging man and maths

Federal Board - Arraal 2004 Paper I

Mathematics Paper-I , Time Allowed: 2.40 Hours Max. Marks: 80 , Available online @ http://www.mathcity.org/fsc

Section -B (4 × 10 = 40 marks)	
Q # 2 (i) Simply $(3 - \sqrt{-4})^3$	Ex 1.3 - 7(viii) – p28
OR Construct a truth table of $[(p \rightarrow q) \land p] \rightarrow q$.	Ex 2.4 – Exp4 – p53
(ii) Without expansion show that $\begin{vmatrix} a-b & b-c & c-a \\ b-c & c-a & a-b \\ c-a & a-b & b-c \end{vmatrix} = 0$	Ex 3.3 – 5(v) – p113
OR Find A , G , H and verify that $A > G > H$ $(G > 0)$ if $a = 2$, $b = 8$.	Ex 6.10 – 14(i) – p225
(iii) Determine the middle term in $\left(\frac{3}{2}x - \frac{1}{3x}\right)^{11}$	Ex 8.2 – 10(ii) – p274
OR Find n and r when ${}^{n-1}C_{r-1}: {}^{n}C_{r}: {}^{n+1}C_{r+1} = 3:6:11.$	Ex 7.4 – 3(ii) – p242
(iv) Find period and domain of $5 \tan \frac{x}{7}$	Ex 11.1 – New – p341
OR Show that $\cos^{-1}(-x) = \pi - \cos^{-1} x$.	Ex 13.2 – 18- p400
(v) Show that the roots of $x^2 + (mx + c)^2 = a^2$ will be equal if $c^2 = a^2(1 + m^2)$.	Ex 4.7 – 5 – p167
(vi) Resolve $\frac{3x-11}{(x^2+1)(x+3)}$ into partial fraction.	Ex 5.3 – Exp1– p186
(vii) Prove that $\frac{1+\cos\theta}{1-\cos\theta} = (\csc\theta + \cot\theta)^2$	Ex 10.2 – 5 – p327
(viii) Prove that; $\frac{\sin 3\theta}{\cos \theta} + \frac{\cos 3\theta}{\sin \theta} = 2\cot 2\theta$	Ex 9.4 – 13 – p312
(ix) Find the smallest angle of the triangle ABC when $a = 37.34$, $b = 3.24$, $c = 35.06$	Ex 12.6 – 6 – p373
(x) Solve; $\sin 2x + \sin x = 0$	Ex 14 – 13 - p407

Section C (40 Marks (5+5 each))	
Note: Attempt any four questions. Graph paper will be supplied on demand.	
Q # 3 (a) If $z_1 = 2 + i$, $z_2 = 3 - 2i$, $z_3 = 1 + 3i$, find real and	Ex 1.3 – Exp2 – p25
imaginary part of $\frac{\overline{z_1}}{z_1}$.	
(b) Convert $(A \cap B) \cap C = A \cap (B \cap C)$ to logical form and prove by constructing a truth table.	Ex 2.5 – 3 – p57

Q # 4 (a) Solve; $x + 2y + z = 2$, $2x + y + 2z = -1$, $2x + 3y - z = 9$	Ex 3.5 – 3(ii) – p138
(b) Solve; $\left(x + \frac{1}{x}\right)^2 - 3\left(x + \frac{1}{x}\right) - 4 = 0$	Ex 4.2 – 18 – p147
Q # 5 (a) Resolve $\frac{2x-5}{(x^2+2)^2(x-2)}$ into partial fraction.	Ex 5.3 – 3 – p188
(b) If S_1 , S_3 , S_5 are the sums of $2n$, $3n$, $5n$ terms of an A.P. Show that $S_5 = 5(S_3 - S_2)$.	Ex 6.4 – 8 – p199
Q # 6 (a) Two dice are thrown twice, What is probability that the sum of the dots in the first throw is 7 and that of the 2 nd throw is 11?	Ex 7.8 – 7 – p255
(b) Show that $\left[\frac{n}{2(n+N)}\right]^{1/2} \approx \frac{8n}{9n-N} - \frac{n+N}{4n}$, where n and N	
are nearly equal.	Ex 8.3 – 8 – p284
Q # 7 (a) Without using calculator/tables, prove that $\sin 19^{\circ} \cos 11^{\circ} + \sin 71^{\circ} \sin 11^{\circ} = \frac{1}{2}$	Ex 10.4 – Exp2 – p334
(b) If $\tan \theta = 8/15$ and the terminal arm of the angle is in 3 rd quadrant. Find the value of other trigonometric functions of θ .	Ex 9.2 – Exp1 – p299
$\mathbf{Q} \# 8$ (a) Draw graphs of $y = \sin x$ and $y = \sin 2x$ on the same axes and to the same scale for their complete period.	Ex 12.2 – 2(i) – p351
(b) Two men are on the opposite sides of a 100m high tower. If the measure of the angles of elevation of the top of the tower are 18° and 22° respectively. Find the distance between them.	Ex 12.3 – 10 – p360
Q # 9 (a) Prove that $\sin^{-1}\frac{4}{5} + \sin^{-1}\frac{5}{13} + \sin^{-1}\frac{16}{65} = \frac{\pi}{2}$	Ex 13.2 – 10 – p400
(b) Solve $\tan^2 \theta - \sec \theta - 1 = 0$	Ex 14 – 4 – p407

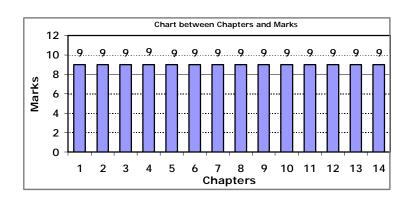
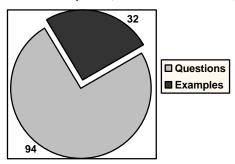
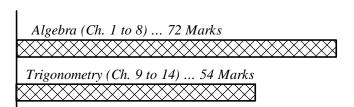




Chart between questions from exercise and examples (not from exercise)

Relation between Algebraic & Trigonometric portion.