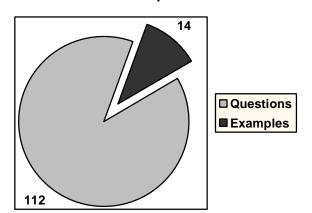
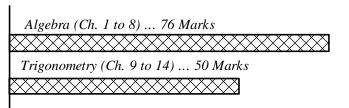

mathcity.org Merging man and maths

Federal Board - Arraal 2003 Paper I Mathematics Paper-I , Time Allowed: 2.30 Hours Max. Marks: 80 , Available online @ http://www.mathcity.org/fsc


Section -B (4 × 10 = 40 marks)	
Q # 2 (i) Show that $\sim q \land (p \rightarrow q) \rightarrow \sim p$ is a tautology. $\begin{bmatrix} 4 & \lambda & 3 \end{bmatrix}$	Ex 2.4 - 3(iv) - p54
OR Find λ if matrix $A = \begin{bmatrix} 4 & \lambda & 3 \\ 7 & 3 & 6 \\ 2 & 3 & 1 \end{bmatrix}$ is singular.	Ex 3.3 – 11(i) – p114
(ii) If α and β are the roots of $ax^2 + bx + c = 0$, find the equation whose roots are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$.	Ex 4.6 – 7(ii) – p164
OR Show that the roots of $x^2 + (mx + c)^2 = a^2$ will be equal if $c^2 = a^2(1 + m^2)$.	Ex 4.7 – 5 – p167
(iii) Resolve $\frac{1}{r^2-1}$ into partial fraction.	Ex 5.1 – 1 – p183
OR Which term of the $-2,4,10,$ is 148?	Ex 6.2 – 7 – p194
(iv) Find the sum of the n terms of the series whose nth term is $n^2 + 4n + 1$. OR How many signals can made with 4 different flag when any number of them are to be used at a time?	Ex 6.11 – 15(ii) – p229 Ex 7.2 – Exp2- p234
(v) Expand; $(a+2b)^5$.	Ex 8.2 – 1(i) – p273
(vi) Find the trigonometric function of 765°	Ex 9.3 – 6(iii) – p309
(vii) Show that $\cos(\alpha + \beta) \cdot \cos(\alpha - \beta) = \cos^2 \beta - \cos^2 \alpha$	Ex 10.2 – 5 – p327
(viii) A vertical pole is $8m$ high and the length of its shadow is $6m$. What is the angle of elevation of the sun at the time?	Ex 12.3 – 1 – p359
(ix) Find the greatest angle of the triangle if the sides of the triangle are 16, 20, 33.	Ex 12.6 – 7 – p373
(x) Solve; $2\sin\theta + \cos^2\theta - 1 = 0$.	Ex 14 – 5 – p407


Section C (40 Marks (5+5 each))		
Note: Attempt any four questions. Graph paper will be supplied on demand.		
Q # 3 (a) Prove that $(A \cup B)' = A' \cap B'$. (b) Solve the following equations $2x + 2y + z = 3$, $3x - 2y - 2z = 1$, $5x + y - 3z = 2$	Ex 2.3 – prop (i) – p42 Ex 3.5 – 1 – p138	
Q # 4 (a) Show that the roots of the equation $(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0$ are real. (b) Solve the equations: $x^2-5xy+6y^2=0$, $x^2+y^2=45$.	Ex 4.7 – Exp3 – p166 Ex 4.9 – 4 – p172	

Q # 5 (a) Resolve $\frac{9x-7}{(x^2+1)(x+3)}$ into partial fraction. (b) The sum of an infinite geometric series is 9 and the sum of square of its term is $\frac{81}{5}$. Find the series.	Ex 5.3 – 1 – p187 Ex 6.8 – 14 – p216
Q # 6 (a) Prove that ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$.	Ex 7.4 – 10 – p242
(b) If x is nearly equal to 1, then prove that $px^{p} - qx^{q} \approx (p - q)x^{p+q}.$	Ex 8.3 – 6 – p284
Q #7 (a) Prove that $\sin \frac{\pi}{9} \cdot \sin \frac{2\pi}{9} \cdot \sin \frac{\pi}{3} \cdot \sin \frac{4\pi}{9} = \frac{3}{16}$.	Ex 10.4 – 5(ii) – p336
(b) Draw the graph of $y = \cos \frac{x}{2}$; $x \in [-\pi, \pi]$.	Ex 11.2 – 1(vi) – p351
Q # 8 (a) Solve the triangle <i>ABC</i> when $a = 28.3, b = 31.7, c = 42.8$.	Ex 12.6 – 3 – p373
(b) Show that $\frac{1}{r^2} + \frac{1}{r_1^2} + \frac{1}{r_2^2} + \frac{1}{r_3^2} = \frac{a^2 + b^2 + c^2}{\Delta^2}$.	Ex 12.8 – Exp3 – p383
Q # 9 (a) Show that $\sin^{-1} \frac{77}{85} - \sin^{-1} \frac{3}{5} = \cos^{-1} \frac{15}{17}$	Ex 13.2 – 7 – p400
(b) Solve; $4\sin^2\theta - 8\cos\theta + 1 = 0$	Ex 14 – 8 – p407

Chart between Questions from Exercises and Examples

Relation between Algebraic & Trigonometric portion.