



International Competitions and Assessments for Schools

#### DO NOT OPEN THIS BOOKLET UNTIL INSTRUCTED.

**STUDENT'S NAME:** 

Read the instructions on the **ANSWER SHEET** and fill in your **NAME, SCHOOL** and **OTHER INFORMATION**. Use a 2B or B pencil. Do **NOT** use a pen.

Rub out any mistakes completely.

You MUST record your answers on the ANSWER SHEET.

Mark only **ONE** answer for each question. Your score will be the number of correct answers. Marks are **NOT** deducted for incorrect answers.

Use the information provided to choose the **BEST** answer from the four possible options. On your **ANSWER SHEET** fill in the oval that matches your answer.

You may use a calculator and a ruler.

# SCIENCE

# Educational Assessment



- 1. The Sun is a G Class star. What are some characteristics of the Sun?
  - (A) titanium oxide and strong hydrogen emission lines present, surface temperature greater than 6000 °C
  - (B) strong metallic lines present, surface temperature greater than 6000 °C
  - (C) strong metallic lines present, spectral colour yellow
  - (D) strong titanium oxide lines present, spectral colour yellow
- 2. Sirius is a white star which has a surface temperature of 10000 °C. Its spectrum has hydrogen but no strong metallic lines.

What class of star is Sirius?

- (A) A Class
- (B) B Class
- (C) F Class
- (D) O Class

| Material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tensile streng<br>(MN/m <sup>2</sup> )                                                                                                                                               | lth                                                                                                                                                                                                                                    | 10                                                                                                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| muscle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1                                                                                                                                                                                  |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                 |
| cartilage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                    |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                 |
| house brick                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                                                                                                                                                                                    |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                 |
| tendon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 82                                                                                                                                                                                   |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                 |
| bone (elderly)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 85                                                                                                                                                                                   |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                 |
| oone (young adult)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 110                                                                                                                                                                                  |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                 |
| glass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 175                                                                                                                                                                                  |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                 |
| nylon thread                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1050                                                                                                                                                                                 |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                 |
| oproximately how ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | any times stronge                                                                                                                                                                    | er is nylon thread than                                                                                                                                                                                                                | tendon?                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                      |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                 |
| A) 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                      |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                 |
| A) 0.08<br>3) 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                      |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                 |
| A) 0.08<br>3) 13<br>C) 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                      |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                 |
| A) 0.08<br>B) 13<br>C) 82<br>D) 1050<br>order to X-ray the dig<br>bstance which will no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | gestive system, it<br>ot react with the c                                                                                                                                            | is necessary to swall<br>chemicals (mainly wate                                                                                                                                                                                        | ow a dense and very insoluble<br>er and hydrochloric acid) in the stoma                                                                                                                                                                                                                         |
| A) 0.08<br>B) 13<br>C) 82<br>D) 1050<br>order to X-ray the dig<br>ibstance which will no<br>formation about some                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | gestive system, it<br>ot react with the c<br>e substances is g                                                                                                                       | is necessary to swall<br>chemicals (mainly wate<br>iven in the table.                                                                                                                                                                  | ow a dense and very insoluble<br>er and hydrochloric acid) in the stomad                                                                                                                                                                                                                        |
| A)       0.08         B)       13         C)       82         D)       1050         order to X-ray the dig         bstance which will no         ormation about some         Substance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | gestive system, it<br>ot react with the c<br>e substances is g<br>Density<br>(g/cm³)                                                                                                 | is necessary to swall<br>chemicals (mainly wate<br>iven in the table.<br><b>Solubility in water<br/>(g/100 mL)</b>                                                                                                                     | ow a dense and very insoluble<br>er and hydrochloric acid) in the stomat<br><b>Reaction to hydrochloric acid</b>                                                                                                                                                                                |
| A)       0.08         3)       13         C)       82         D)       1050         order to X-ray the digostance which will no         ostance which will no         ormation about some         Substance         aesium carbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gestive system, it<br>ot react with the c<br>e substances is g<br>Density<br>(g/cm³)<br>4.0                                                                                          | is necessary to swall<br>chemicals (mainly wath<br>iven in the table.<br>Solubility in water<br>(g/100 mL)<br>2.6 × 10 <sup>17</sup>                                                                                                   | ow a dense and very insoluble<br>er and hydrochloric acid) in the stomac<br>Reaction to hydrochloric acid<br>reacts to form carbon dioxide                                                                                                                                                      |
| A)       0.08         B)       13         C)       82         D)       1050         order to X-ray the digostance which will not some         cormation about some         Substance         aesium carbonate         on(III) hydroxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | gestive system, it<br>ot react with the c<br>e substances is g<br>Density<br>(g/cm³)<br>4.0<br>3.9                                                                                   | is necessary to swall<br>chemicals (mainly wath<br>iven in the table.<br>Solubility in water<br>(g/100 mL)<br>2.6 × 10 <sup>17</sup><br>9.9 × 10 <sup>-18</sup>                                                                        | ow a dense and very insoluble<br>er and hydrochloric acid) in the stomac<br>Reaction to hydrochloric acid<br>reacts to form carbon dioxide<br>reacts to form iron (III) chloride                                                                                                                |
| A)       0.08         B)       13         C)       82         D)       1050         Dorder to X-ray the digostance which will not some stance which | gestive system, it<br>ot react with the c<br>e substances is g<br>Density<br>(g/cm³)<br>4.0<br>3.9<br>4.5                                                                            | t is necessary to swall<br>chemicals (mainly wath<br>iven in the table.<br>Solubility in water<br>(g/100 mL)<br>$2.6 \times 10^{17}$<br>$9.9 \times 10^{-18}$<br>$2.5 \times 10^{-4}$                                                  | w a dense and very insoluble<br>er and hydrochloric acid) in the stomat<br>Reaction to hydrochloric acid<br>reacts to form carbon dioxide<br>reacts to form iron (III) chloride<br>does not react                                                                                               |
| A)       0.08         B)       13         C)       82         D)       1050         order to X-ray the dig         bstance which will no         ormation about some         Substance         aesium carbonate         on(III) hydroxide         arium sulfate         agnesium sulfate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | gestive system, it<br>of react with the c<br>e substances is g<br>Density<br>(g/cm³)<br>4.0<br>3.9<br>4.5<br>2.7                                                                     | t is necessary to swall<br>chemicals (mainly wath<br>iven in the table.<br>Solubility in water<br>(g/100 mL)<br>$2.6 \times 10^{17}$<br>$9.9 \times 10^{-18}$<br>$2.5 \times 10^{-4}$<br>$3.6 \times 10^{1}$                           | ow a dense and very insoluble<br>er and hydrochloric acid) in the stomat<br>Reaction to hydrochloric acid<br>reacts to form carbon dioxide<br>reacts to form iron (III) chloride<br>does not react<br>does not react                                                                            |
| A)       0.08         B)       13         C)       82         D)       1050         order to X-ray the digostance which will not bostance which will not bostance which will not bostance which will not bostance         ormation about some         Substance         aesium carbonate bon(III) hydroxide arium sulfate agnesium sulfate         agnesium sulfate show                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | gestive system, it<br>of react with the c<br>e substances is g<br>Density<br>(g/cm³)<br>4.0<br>3.9<br>4.5<br>2.7<br>n would be most                                                  | is necessary to swall<br>chemicals (mainly water<br>iven in the table.<br>Solubility in water<br>(g/100 mL)<br>$2.6 \times 10^{17}$<br>$9.9 \times 10^{-18}$<br>$2.5 \times 10^{-4}$<br>$3.6 \times 10^{1}$<br>suitable for use when   | w a dense and very insoluble<br>er and hydrochloric acid) in the stomat<br>Reaction to hydrochloric acid<br>reacts to form carbon dioxide<br>reacts to form iron (III) chloride<br>does not react<br>does not react<br>X–raying the digestive system?                                           |
| A)       0.08         B)       13         C)       82         D)       1050         order to X-ray the digostance which will not some stance show some stance which will not s | gestive system, it<br>of react with the c<br>e substances is g<br>Density<br>(g/cm <sup>3</sup> )<br>4.0<br>3.9<br>4.5<br>2.7<br>n would be most<br>bonate                           | t is necessary to swall<br>chemicals (mainly wath<br>iven in the table.<br>Solubility in water<br>(g/100 mL)<br>$2.6 \times 10^{17}$<br>$9.9 \times 10^{-18}$<br>$2.5 \times 10^{-4}$<br>$3.6 \times 10^{1}$<br>suitable for use when  | Device a dense and very insoluble         Der and hydrochloric acid) in the stomate         Reaction to hydrochloric acid         reacts to form carbon dioxide         reacts to form iron (III) chloride         does not react         does not react         X-raying the digestive system? |
| A) 0.08<br>B) 13<br>C) 82<br>D) 1050<br>Order to X-ray the dig<br>ostance which will no<br>ormation about some<br>Substance<br>aesium carbonate<br>on(III) hydroxide<br>arium sulfate<br>agnesium sulfate<br>hich substance show<br>caesium carl<br>iron(III) hydroxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | gestive system, it<br>of react with the c<br>e substances is g<br>Density<br>(g/cm³)<br>4.0<br>3.9<br>4.5<br>2.7<br>n would be most<br>ponate<br>poxide                              | t is necessary to swall<br>chemicals (mainly water<br>iven in the table.<br>Solubility in water<br>(g/100 mL)<br>$2.6 \times 10^{17}$<br>$9.9 \times 10^{-18}$<br>$2.5 \times 10^{-4}$<br>$3.6 \times 10^{1}$<br>suitable for use when | Reaction to hydrochloric acid) in the stomad<br>reacts to form carbon dioxide<br>reacts to form iron (III) chloride<br>does not react<br>does not react<br>X–raying the digestive system?                                                                                                       |
| A)       0.08         B)       13         C)       82         D)       1050         order to X-ray the digostance which will not some stance which  | gestive system, it<br>of react with the c<br>e substances is g<br>Density<br>(g/cm <sup>3</sup> )<br>4.0<br>3.9<br>4.5<br>2.7<br>n would be most<br>conate<br>oxide                  | is necessary to swall<br>chemicals (mainly water<br>iven in the table.<br>Solubility in water<br>(g/100 mL)<br>$2.6 \times 10^{17}$<br>$9.9 \times 10^{-18}$<br>$2.5 \times 10^{-4}$<br>$3.6 \times 10^{1}$<br>suitable for use when   | Reaction to hydrochloric acid) in the stomat<br>reacts to form carbon dioxide<br>reacts to form iron (III) chloride<br>does not react<br>does not react<br>X–raying the digestive system?                                                                                                       |
| <ul> <li>) 0.08</li> <li>) 13</li> <li>) 82</li> <li>) 1050</li> <li>order to X-ray the dig<br/>stance which will no</li> <li>ormation about some</li> <li>Substance</li> <li>substance</li> <li>agnesium carbonate</li> <li>n(III) hydroxide</li> <li>rium sulfate</li> <li>agnesium sulfate</li> <li>ich substance show</li> <li>caesium carl<br/>iron(III) hydroxide</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | gestive system, it<br>of react with the c<br>e substances is g<br>Density<br>(g/cm <sup>3</sup> )<br>4.0<br>3.9<br>4.5<br>2.7<br>n would be most<br>bonate<br>oxide<br>te<br>sulfate | t is necessary to swall<br>chemicals (mainly wath<br>iven in the table.<br>Solubility in water<br>(g/100 mL)<br>$2.6 \times 10^{17}$<br>$9.9 \times 10^{-18}$<br>$2.5 \times 10^{-4}$<br>$3.6 \times 10^{1}$<br>suitable for use when  | w a dense and very insoluble         er and hydrochloric acid) in the stomad         Reaction to hydrochloric acid         reacts to form carbon dioxide         reacts to form iron (III) chloride         does not react         does not react         X–raying the digestive system?        |

StudentBounty.com A scientist wanted to investigate the effects of two types of antibiotics, X and Y, on the *E. coli*. He grew five cultures of the bacterium in a growth medium placed on separate Pe 5. one shown.



Information about the preparation of the five dishes is shown in the table.

|                                            |    | P  | etri Dis | h  |    |
|--------------------------------------------|----|----|----------|----|----|
| Experimental Condition                     | I  | II | III      | IV | V  |
| Amount of growth medium in dish (mL)       | 10 | 15 | 10       | 20 | 15 |
| Type of antibiotic<br>added to dish        | х  | х  | Y        | x  | Y  |
| Amount of antibiotic<br>added to dish (mL) | 3  | 2  | 2        | 2  | 2  |
| Temperature at which<br>dish is kept (°C)  | 30 | 25 | 30       | 30 | 25 |

Which two dishes should he use to compare the effects of X and Y on the growth of the bacteria?

| (A) | I and III  | (B) | II and V |
|-----|------------|-----|----------|
| (C) | III and IV | (D) | IV and V |

#### For questions 6 and 7 use the information below.

Serial dilution is a procedure used to make a very dilute solution.

The procedure for diluting a solution of copper sulfate is shown.



6.

How many times more concentrated is the initial solution than the solution in tube 4?

- (A) 10 000 times
- (B) 1 000 times
- (C) 100 times
- 10 times (D)
- 7. A student estimated that there were 1 000 000 particles of the dissolved substance in the initial solution. How many dilutions would she have to perform to obtain a solution with approximately 100 particles of the dissolved substance?



- (B) 5 and 6
- (C) 6 and 7
- (D) 7 and 8

# 9. Was the student's conclusion correct? Why?

|     | Conclusion correct? | Reason                                         |
|-----|---------------------|------------------------------------------------|
| (A) | no                  | The marble went through the water the slowest. |
| (B) | yes                 | The marble went through the water the slowest. |
| (C) | yes                 | The marble went through the honey the slowest. |
| (D) | no                  | The marble went through the honey the slowest. |



The height that the liquids rise can be calculated from:

 $\frac{\text{density (liquid 1)}}{\text{density (liquid 2)}} = \frac{\text{height (liquid 2)}}{\text{height (liquid 1)}}$ 

A student performed an experiment with Hare's apparatus using dichloromethane (density 1.32 g/cm<sup>3</sup>) and trichloromethane (density 1.98 g/cm<sup>3</sup>).

Which of the following could be the height each liquid rose in the tube?

|     | Height of dichloromethane (mm) | Height of trichloromethane (mm) |
|-----|--------------------------------|---------------------------------|
| (A) | 40                             | 60                              |
| (B) | 60                             | 40                              |
| (C) | 90                             | 110                             |
| (D) | 110                            | 90                              |



## Acknowledgment

Copyright in this booklet is owned by Educational Assessment Australia, UNSW Global Pty Limited, unless otherwise indicated. Every effort has been made to trace and acknowledge copyright. Educational Assessment Australia apologises for any accidental infringement and welcomes information to redress the situation.



#### The following year levels should sit THIS Paper:

| Australia    | Year 9      |
|--------------|-------------|
| Brunei       | Form 4      |
| Hong Kong    | Form 3      |
| Indonesia    | Year 10     |
| Malaysia     | Form 3      |
| New Zealand  | Year 10     |
| Pacific      | Year 9      |
| Singapore    | Secondary 2 |
| South Africa | Grade 9     |
|              |             |





Educational Assessment Australia eaa.unsw.edu.au © 2010 Educational Assessment Australia. EAA is an education group of UNSW Global Pty Limited, a not-for-profit provider of education, training and consulting services and a wholly owned enterprise of the University of New South Wales. ABN 62 086 418 582



- Print your details clearly in the boxes provided.
- · Make sure you fill in only one oval in each column.

| EXAMPLE 1: | Debbie Bach                                               | EXAMPL     | .E 2: Chan Ai Beng | EXAMPLE | 3: Jamal bin Ab    |
|------------|-----------------------------------------------------------|------------|--------------------|---------|--------------------|
|            | LAST NAME<br>BACH<br>OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO | FIRST NAME |                    |         |                    |
|            |                                                           | 0<br>~     |                    |         | َ <mark>@</mark> ا |

| -IR          | 21    | N         | 417      | IE                       | to   | ap                      | pea       | r o          | n c          | ert            | ific         | ate                        | )            |              |                |              |                      |              |              |              |              |              |               | LÆ           | 12           | IN           | IAI          |              | . το         | o ap       | pe           | ar           | on           | Ce           | ertii        | ICa            | ite            |              |                         |              |              |   |
|--------------|-------|-----------|----------|--------------------------|------|-------------------------|-----------|--------------|--------------|----------------|--------------|----------------------------|--------------|--------------|----------------|--------------|----------------------|--------------|--------------|--------------|--------------|--------------|---------------|--------------|--------------|--------------|--------------|--------------|--------------|------------|--------------|--------------|--------------|--------------|--------------|----------------|----------------|--------------|-------------------------|--------------|--------------|---|
|              |       |           |          |                          |      |                         |           |              |              |                |              |                            |              |              |                |              |                      |              |              |              |              |              |               |              |              |              |              |              |              |            |              |              |              |              |              |                |                |              |                         |              |              |   |
|              |       |           |          |                          |      |                         |           |              |              |                |              |                            |              |              | _              |              |                      |              |              |              |              |              |               |              |              |              |              |              |              |            |              |              |              |              |              |                |                |              |                         |              |              |   |
| D            |       | $\circ$   |          | $\circ$                  |      | $\circ$                 | $\circ$   | $\bigcirc$   | $\circ$      | $\bigcirc$     | 0            | $\bigcirc$                 | 0            | $\bigcirc$   | 0              | $\bigcirc$   | 0                    | $\bigcirc$   | 0            | $\bigcirc$   | 0            | $\bigcirc$   |               | $\bigcirc$   | $\bigcirc$   | 0            | $\bigcirc$   | $\bigcirc$   | $\supset$    | $\bigcirc$ |              |              | $\bigcirc$   | 0            | $\bigcirc$   | 0              | $\bigcirc$     | 0            | $\bigcirc$              | $\supset$    | $\bigcirc$   | C |
| A) (         |       |           |          |                          |      |                         |           | A            | A            | A              | A            | A                          | A            | A            | A              | A            | A                    | A            | A            | A            | A            | A            |               | A            | A            | A            |              | $\mathbb{A}$ | A            | A          | A            | A            | A            | A            | A            | A              | A              |              | $\overline{\mathbb{A}}$ | A) (         | A            | A |
| B            | B     | ) (B      | B        | B                        | B    | B                       | B         | B            | B            | B              | B            | B                          | B            | B            | B              | B            | B                    | B            | B            | B            | ₿            | B            |               | B            | B            | B            | B            | B            | B            | B          | B            | B            | B            | B            | R            | B              | B              | B            | B                       | B            | B            | œ |
| 0            | 0     | 0         | 0        | 0                        | 0    | 0                       | 0         | C            | C            | C              | C            | C                          | C            | C            | C              | C            | C                    | C            | C            | C            | C            | C            |               | C            | C            | C            | C            | © (          | 0            | C          | 0            | C            | C            | $\bigcirc$   | C            | ି              | C              | C            | 0                       | 0            | C            | C |
|              | 0     |           |          | 0                        |      |                         |           | D            | D            | D              | D            | D                          | ▣            | D            | D              | D            | ▣                    | D            | D            | D            | ▣            | D            |               | D            | D            | ▣            |              |              | D            |            | D            | D            | D            | D            | D            | رج             | D              |              |                         | D            | D            | 0 |
| Ð            | DE    | Œ         | Œ        | Œ                        | Œ    | Œ                       | E         | E            | E            | E              | E            | E                          | E            | E            | E              | E            | E                    | E            | E            | E            | E            | E            |               | E            | E            | E            | E            | E            | E            | Ð′         |              | Ŀ            | Ŀ            | Č.           | E            | E              | E              | E            | E                       | E)           | E            | Œ |
| Ð            | ÐŒ    | Œ         | Œ        | Œ                        | Œ    | Œ                       | ) F       | Ē            | Ē            | F              | F            | F                          | Ð            | Ð            | Ð              | Ð            | Ē                    | F            | Ð            | Ð            | Ē            | F            |               | F            | F            | Ē            | Ē            | Ē            | Ð            | Ð          | Ð            | , D          | 0            | F            | F            | F              | F              | E            | E (                     | E)           | F            | Œ |
| G (          | 9 G   | ) G       | ) G      | ) (G                     | 0    | 6                       | 6         | G            | G            | G              | G            | G                          | G            | G            | G              | G            | G                    | G            | G            | G            | G            | G            |               | G            | G            | G            | G            | $\bigcirc$   | 5)           |            | G            | ٦            | G            | G            | G            | G              | G              | G            | G (                     | G            | G            | @ |
| Ð            | ÐŒ    | Œ         | Œ        | Œ                        | Œ    | Œ                       | ) (H)     | H            | Œ            | H              | H            | H                          | H            | H            | Ð              | H            | H                    | H            | Ð            | H            | Ð            | H            |               | H            | Œ            | Œ            | Ð            | ر ک          | Ð            | Ð          | H            | H            | H            | H            | H            | H              | H              | Ð            | H (                     | H) (         | H            | Œ |
| DC           |       |           |          |                          |      |                         |           |              |              |                |              |                            |              |              |                |              |                      |              |              |              |              |              |               |              | D            |              |              |              | D            |            |              | D            |              |              |              |                |                |              |                         |              |              | Q |
| D            | DQ    | ) (J      | ) (J     | ) (J                     | ) (J | ) (J                    | ) (J      | J            | J            | J              | J            | J                          | J            | J            | J              | J            | J                    | J            | J            | J            | J            | J            |               | ٩            | J            | J            | J            | J            | J            | J          | J            | J            | J            | J            | J            | J              | J              | J            | J                       | J            | J            | Ģ |
| K) (         | S) (K | ) (K      | ) (K     | ) (K                     | ) (K | ) (K                    | ) (K)     | K            | K            | K              | K            | K                          | K            | K            | K              | K            | K                    | K            | K            | K            | K            | K            |               | V            | K            | (K)          | (K)          | K (          | K            | K          | K            | K            | K            | K            | K            | K              | K              | K)           | K (                     | K) (         | K            | Œ |
| DO           |       |           |          |                          |      |                         |           |              |              |                |              |                            |              |              |                |              |                      |              |              |              |              |              |               | L            | 2            |              |              |              | D            | D          | D            | D            |              |              |              |                |                |              |                         | D            |              | 0 |
|              |       | ) 🕅       | ) (M     | 0                        | ) (M | ) (M                    | ) (M)     |              | M            |                | M            |                            | M            |              | M              |              | M                    |              | ₪            | ₼            | 5            | D            | $\mathcal{D}$ | M            |              | M            |              | (M) (        | M            | M          | M            | M            |              | ₪            |              | M              |                | M            | M (                     | M            | M            | Q |
|              |       |           |          |                          |      |                         |           |              |              |                | N            |                            | N            | N            | N              | N            | N                    | N            | C )          |              | (N           |              |               | N            | N            | N            |              | $\mathbb{N}$ | N            | N          | $\mathbb{N}$ | N            | N            | N            |              | N              |                |              | $\mathbb{N}$            |              | N            | Œ |
| D (          | 0     | 0         | 0        | 0                        | 0    | 0                       | 0         | 0            | 0            | 0              | 0            | 0                          | 0            | 0            | 0              | 0            | ى                    | 0            | 0            | 0            | ې            | 0            |               | 0            | 0            | 0            | 0            | 0            | 0            | 0          | 0            | 0            | 0            | 0            | 0            | 0              | 0              | 0            | 0                       | 0            | 0            | 0 |
| Ð            | Ð     | P         | P        | P                        | P    | P                       | P         | P            | P            | P              | P            | P                          | P            | P            |                | P            | $\tau_{\mathcal{I}}$ | P            | P            | P            | P            | P            |               | P            | P            | P            | P            | P            | P            | P          | P            | P            | P            | P            | P            | P              | P              | P            | P                       | P            | P            | Œ |
| <u>ک</u> و   | D @   | 0         | 0        | 0                        | 0    | 0                       | 0         | 0            | 0            | 0              | 0            | 0                          | 0            | 0            | 0              | 0            | C                    | ٩            | 0            | 0            | 0            | 0            |               | 0            | 0            | 0            | 0            | 0            | 0            | 0          | 0            | 0            | 0            | 0            | 0            | 0              | 0              | 0            | 0                       | 0            | 0            | 0 |
|              | R     | R         | R        | R                        | R    | R                       | R         | R            | R            | R              | R            | P                          | R            | R            | ন)             | P            | R                    | R            | R            | R            | R            | R            |               | R            | R            | R            | R            | R            | R            | R          | R            | R            | R            | R            | R            | R              | R              | R            | R                       | R            | R            | Œ |
| S (          | 5) (S | ) (S      | ) (S     | ) (S                     | ) (S | ) (S                    | ) (S      | S            | S            | S              | S            | S                          | S            | G            | \$             | S            | S                    | S            | S            | S            | S            | S            |               | S            | S            | S            | S            | S            | S            | S          | <u>s</u>     | S            | S            | S            | S            | S              | S              | S            | S (                     | S (          | S            | ( |
| DC           | DC    | D (T      | ) (T     | D (T                     | ) (T | D (T                    |           | T            | T            | D              | T            | T                          | 0            | T            | T              | T            | T                    | T            | T            | T            | T            | T            |               | T            | $\bigcirc$   | T            | (T)          | T)           | T            | T          | T            | T            | T            | T            | T            | T              | T              | T            | T (                     | T) (         | T            | Q |
| D (          | D (   | 0         | U        | 0                        | 0    | U                       | ) ())     | C            | $\bigcirc$   | J              | $\bigcirc$   | D                          | $\bigcirc$   | U            | U              | U            | U                    | $\bigcirc$   | U            | U            | U            | U            |               | $\bigcirc$   | $\bigcirc$   | U            | U            | U            | U            | U          | U            | U            | U            | U            | U            | U              | U              | U            | U (                     | ש מ          | U            | 0 |
| $\mathbb{V}$ | DV    | $\nabla$  | 0        | 0                        | ) ⊘  | ⊘ (♥                    |           | Q            | (V           | V              | V            | $\heartsuit$               | $\heartsuit$ | $\heartsuit$ | $\heartsuit$   | $\heartsuit$ | $\heartsuit$         | $\heartsuit$ | $\heartsuit$ | $\heartsuit$ | $\heartsuit$ | $\heartsuit$ |               | $\heartsuit$ | $\heartsuit$ | $\heartsuit$ | $\heartsuit$ | $\heartsuit$ | $\nabla$     | $\nabla$   | $\nabla$     | $\nabla$     | $\heartsuit$ | $\heartsuit$ | $\heartsuit$ | $\heartsuit$   | $\heartsuit$   | $\heartsuit$ | $\heartsuit$            | $\nabla$     | $\heartsuit$ | 0 |
| w (          | v (W  | ) (W      | ) (W     | ) (W                     | ) (W | <u>w</u>                | ) (v      | $\odot$      | W            | $\odot$        |              |                            |              | W            |                | W            |                      | W            | W            | W            |              | (W)          |               | W            |              |              | (W)          | w (          | W) (         | w (        | W (          | $\mathbb{W}$ | W            | (W)          |              | W              | W              | (W) (        | w (                     | W) (         | w            | Ø |
| X C          |       | $\propto$ | $\infty$ | <u>)</u> <u>(</u> .      | 10   | Q                       | $\otimes$ | $\bigotimes$ | $\otimes$    | $\otimes$      | $\bigotimes$ | $\bigotimes$               | $\otimes$    | $\otimes$    | $\otimes$      | $\bigotimes$ | $\otimes$            | $\otimes$    | $\otimes$    | $\bigotimes$ | $\otimes$    | $\bigotimes$ |               | $\otimes$    | $\otimes$    | $\otimes$    | $\otimes$    | $\otimes$    | $\mathbf{X}$ | $\infty$   | X            | $\mathbb{X}$ | $\bigotimes$ | $\otimes$    | $\otimes$    | $\bigotimes$   | $\bigotimes$   | $\otimes$    | $\infty$ (              | $\mathbf{X}$ | $\otimes$    | Ø |
| Y C          | D (Y  | ) (Y      | ) (Y     |                          | Y    | (Y                      | ) (Y)     | $\heartsuit$ | $\heartsuit$ | $(\mathbf{Y})$ | $\heartsuit$ | $(\underline{\mathbf{Y}})$ | $\bigcirc$   | Y            | $(\mathbf{Y})$ | Y            | $\heartsuit$         | Y            | $\bigcirc$   | Y            | $\bigcirc$   | Y            |               | $\heartsuit$ | $\bigcirc$   | $\bigcirc$   | $\bigcirc$   | $\odot$      | Y            | Y          | Y            | Y            | Y            | Y            | $\bigcirc$   | $\heartsuit$   | $(\mathbf{Y})$ | $\bigcirc$   | Y                       | Y            | Y            | 0 |
| Z) (         |       | 0         | C        | 0                        | ) Z  |                         | ) (2)     | Z            | Z            | Z              | Z            | Z                          | Z            | Z            | Z              | Z            | Z                    | Z            | $\bigcirc$   | Z            | Z            | Z            |               | $\bigcirc$   | Z            | Z            | Z            | Z            | Z            | Z          | Z            | Z            | Z            | Z            | Z            | Z              | Z              | Z            | 20                      | Z) (         | Z            | Q |
|              |       | ) (       | ) 🖯      | $\overline{\mathbf{G}}$  | ) 🖯  | $\overline{\mathbf{O}}$ | ) 🕡       | $\bigcirc$   | •            | $\bigcirc$     | $\bigcirc$   | •                          | •            | •            | $\odot$        | $\bigcirc$   | $\bigcirc$           | •            | $\bigcirc$   | •            | $\bigcirc$   | $\bigcirc$   |               | •            | ∍            | $\bigcirc$   | $\bigcirc$   | $\odot$      | •            | •          | •            | •            | •            | $\bigcirc$   | •            | $\overline{0}$ | •              | $\odot$      | •                       | •            | $\bigcirc$   | C |
| ЭС           | ÐŒ    | Œ         | Œ        | Ē                        | Œ    | Œ                       | Ð         | Θ            | Θ            | Θ              | Ξ            | Θ                          | Θ            | Ξ            | Θ              | Ξ            | Θ                    | Ξ            | Θ            | Θ            | Θ            | Θ            |               | O            | Θ            | Θ            | Θ            | Θ            | Э            | Э          | Э            | Э            | Ξ            | Θ            | Θ            | Ξ              | Θ              | Θ            | Э                       | ЭC           | Θ            | G |
| DC           |       |           |          | $\overline{\mathcal{O}}$ |      | $\mathcal{T}$           |           |              |              |                | ()           |                            |              |              | $\bigcirc$     |              | $\bigcirc$           | 0            |              | 0            | $\bigcirc$   |              |               |              |              | $\bigcirc$   |              |              |              |            |              |              |              |              |              |                |                |              |                         |              |              | Q |

| Are you male | or female? |
|--------------|------------|
| Male         | Female     |



DATE OF BIRTH Day Month Year CLASS (optional)

| 0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 |   |   |   |   |   |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|
| 0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 |   |   |   |   |   |   |
| 1     1     1     1       2     2     2     2       3     3     3     3       4     4     4       5     5     5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 2 2 2 2<br>3 3 3 3 3<br>4 4 4 4<br>5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 | 1 | 1 | 1 | 1 | 1 |
| 3       3       3       3       3         4       4       4       4         5       5       5       5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 | 2 |   | 2 | 2 | 2 |
| 4     4     4       5     5     5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3 | 3 |   | 3 | 3 | 3 |
| 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | 4 |   | 4 | 4 | 4 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | 5 |   | 5 | 5 | 5 |
| 6 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | 6 |   | 6 | 6 | 6 |

| A | K       |  |
|---|---------|--|
| B |         |  |
| C | ₪       |  |
| D |         |  |
| E | $\odot$ |  |
| F | P       |  |

© @

Does anyone in your home usually speak a language other than English? O No ○ Yes

School name:

. .

## TO ANSWER THE QUESTIONS

**Example:** Ari added cordial to water to make a jug of drink. What will be the volume of the drink in the jug?

- (A) 50 mL
- (B) 150 mL
- (C) 200 mL
- (D) 250 mL

The answer is 250 mL, so you would fill in the oval 0, as shown.

|  | A | B | C | • |  | $\bigcirc$ | USE 2B OR B PENCIL |  |
|--|---|---|---|---|--|------------|--------------------|--|
|--|---|---|---|---|--|------------|--------------------|--|

# **START**

| 1       A       B       C       D         2       A       B       C       D         3       A       B       C       D         4       A       B       C       D         5       A       B       C       D         6       A       B       C       D         7       A       B       C       D         9       A       B       C       D         10       A       B       C       D |    |   |   |   |   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|---|---|---|
| 2       A       B       C       D         3       A       B       C       D         4       A       B       C       D         5       A       B       C       D         6       A       B       C       D         7       A       B       C       D         8       A       B       C       D         9       A       B       C       D         10       A       B       C       D | 1  | A | B | C | D |
| 3       A       B       C       D         4       A       B       C       D         5       A       B       C       D         6       A       B       C       D         7       A       B       C       D         8       A       B       C       D         9       A       B       C       D         10       A       B       C       D                                           | 2  | A | B | C | D |
| 4       A       B       C       D         5       A       B       C       D         6       A       B       C       D         7       A       B       C       D         8       A       B       C       D         9       A       B       C       D         10       A       B       C       D                                                                                     | 3  | A | B | C | D |
| 5       A       B       C       D         6       A       B       C       D         7       A       B       C       D         8       A       B       C       D         9       A       B       C       D         10       A       B       C       D                                                                                                                               | 4  | A | B | C | D |
| 6       A       B       C       D         7       A       B       C       D         8       A       B       C       D         9       A       B       C       D         10       A       B       C       D                                                                                                                                                                         | 5  | A | B | C | D |
| 7       A       B       C       D         8       A       B       C       D         9       A       B       C       D         10       A       B       C       D                                                                                                                                                                                                                   | 6  | A | B | C | D |
| 8       A       B       C       D         9       A       B       C       D         10       A       B       C       D                                                                                                                                                                                                                                                             | 7  | A | B | C | D |
| 9 A B C D<br>10 A B C D                                                                                                                                                                                                                                                                                                                                                            | 8  | A | B | C | D |
| 10 A B C D                                                                                                                                                                                                                                                                                                                                                                         | 9  | A | B | C | D |
|                                                                                                                                                                                                                                                                                                                                                                                    | 10 | A | B | C | D |





| QUESTION | KEY | KEY REASONING                                                                                                                                                                                                                                                                                                                                                                                                                            | EL OF<br>ULTY |
|----------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 1        | С   | Working backwards from G Class: the Sun is <b>spectral colour yellow</b> , has<br>a surface temperature < 6000 °C (so A and B are wrong), does not have<br>titanium oxide lines (so A and D are wrong) but it does have <b>strong metallic</b><br><b>lines</b> present in the spectrum.                                                                                                                                                  | Eas           |
| 2        | А   | Sirius does not have strong metallic lines but has strong hydrogen lines. The temperature is irrelevant to this question.                                                                                                                                                                                                                                                                                                                | Easy          |
| 3        | В   | $\frac{1050}{82} = 12.8 \approx 13$                                                                                                                                                                                                                                                                                                                                                                                                      | Easy          |
| 4        | С   | In order to X-ray the digestive system, it is necessary to swallow a dense<br>and very insoluble substance. From the table, barium sulfate has the highest<br>density and lowest solubility; it also does not react with hydrochloric acid.<br>Only the last two chemicals do not react with hydrochloric acid, so answers<br>A and B are wrong. Magnesium sulfate is less dense and more soluble than<br>barium sulfate, so D is wrong. | Medium        |
| 5        | В   | To compare the effect of the two types of antibiotics on the growth of bacterium, <i>E. coli</i> , the scientist needs to make sure that all other possible variables were kept the same except for the antibiotic used. This only happens in petri dishes II and V.                                                                                                                                                                     | Medium        |
| 6        | В   | Each test tube changes by a factor of $10 \left( 1 \text{ mL in 10 mL or } \frac{1 \text{ mL}}{10 \text{ mL}} \right)$ .<br>Tube 3 is 10 times more concentrated than tube 4. Tube 2 is 100 times more concentrated that tube 4 while tube 1 is 1000 times more concentrated than tube 4.                                                                                                                                                | Medium/Hard   |
| 7        | В   | Each dilution reduces the concentration by a factor of 10. Therefore to reduce 1 000 000 to 100 we have to divide 1 000 000 four times by 10.                                                                                                                                                                                                                                                                                            | Medium/Hard   |
| 8        | С   | Results are 'observations' made using our five senses, particularly sight. We can see the marbles above the jars at time $= 0$ s, and we can see the jars with the marbles in them at $t = 1$ s, at different positions within the liquids. So point 6 and point 7 of the report are observations. Note that which liquid is the most or least viscous is an inference which is based on observations. It itself is not an observation.  | Medium/Hard   |
| 9        | D   | The more viscous the liquid, the slower the marble will pass though it. After 1 s the slowest marble will have moved the smallest distance. This occurs in honey; therefore, it is the most viscous of these liquids.                                                                                                                                                                                                                    | Medium        |
| 10       | В   | $\frac{\rho_1}{\rho_2} = \frac{1.98}{1.32} = 1.5 = \frac{h_2}{h_1} = \frac{60 \text{ mm}}{40 \text{ mm}} \text{ where } \rho \text{ is density and h is height}$                                                                                                                                                                                                                                                                         | Hard          |

|                        |                                                             | SE   |
|------------------------|-------------------------------------------------------------|------|
| LEGEND                 |                                                             | 1 de |
| Level of difficulty re | efers to the expected level of difficulty for the question. | 11BO |
| Easy                   | more than 70% of candidates will choose the correct option. | Elle |
| Medium                 | about 50–70% of candidates will choose the correct option.  | 5.0  |
| Medium/Hard            | about 30–50% of candidates will choose the correct option.  |      |
| Hard                   | less than 30% of candidates will choose the correct option. |      |
|                        |                                                             |      |