PURE MATHEMATICS, PAPER-II

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BPS-17 UNDER THE FEDERAL GOVERNMENT, 2010

PURE MATHEMATICS, PAPER-II

TIME ALLOWED: 3 HOURS

Ron Country Country

NOTE:	 (i) Attempt FIVE questions in all by selecting at least THREE questions from SECTION-A and TWO questions from SECTION-B. All questions carry EQUAL marks. (ii) Use of Scientific Calculator is allowed.
SECTION	
Q.1. (a)	$\frac{\text{SECTION} - A}{\text{If } f \text{ is continuous on } [a,b] \text{ and if } \infty \text{ is of bounded variation on } [a,b], \text{ then } f \in R(\infty) \text{ on } [a,b] \text{ i.e. } f \text{ is Riemann} - \text{ integrable with respect to } \infty \text{ on } [a,b] $ (10)
(b)	Let $\sum a_n$ be an absolutely convergent series having sum S. then every rearrangement of $\sum a_n$
	also converges absolutely & has sum S. (10)
Q.2. (a)	For what +ve value of P, $\int_{0}^{1} \frac{dn}{(1-x)^{p}}$ is convergent? (10)
(b)	Evaluate $\int_{1}^{5} \frac{dx}{\sqrt[3]{x-2}}$ (10)
Q.3. (a)	Find the vertical and horizontal asymptotes of the graph of function:
- ()	$f(x) = (2x+3)\sqrt{x^2 - 2x + 3}$ (10)
(1.)	
(b)	Let (1) $y = f(x) = \frac{1}{(x-3)^2}$
	Let (i) $y = f(x) = \frac{(x+2)(x-1)}{(x-3)^2}$ (ii) $y=f(x) = \frac{(x-1)}{(x+3)(x-2)}$ (10)
	(ii) $y=f(x) = \frac{(x-1)}{(x+3)(x-2)}$ (10)
	Examine what happens to y when $x \to -\infty$ & $x \to +\infty$
Q.4. (a)	Find a power series about 0 that represent $\frac{x}{1-x^3}$ (6)
(b)	Let $\sum_{n=1}^{\infty} s_{n}$ be any series, Justify. (5+5+4)
	(i) if $\lim_{n \to \infty} \left \frac{Sn+1}{Sn} \right = r < 1$, then $\sum_{n=1}^{\infty} s_n$ is absolutely convergent.
	(ii) if $\lim_{n \to \infty} \left \frac{Sn+1}{Sn} \right = r$ and $(r > 1 \text{ or } r = \infty)$, then $\int_{n}^{\infty} \text{diverges.}$
	(iii) if $\lim_{n \to \infty} \left \frac{Sn+1}{Sn} \right = 1$, then we can draw no conclusion about the convergence of

divergence.

www.StudentBounty.com Homework Help & Pastpapers

- **<u>PURE MATHEMATICS, PAPER-II</u> Q.5.** (a) Show that $\int_{0}^{\Pi 12} Sin^{2m-1}\theta \cos^{2n-1}\theta d\theta = \frac{\Gamma(m)\Gamma(n)}{2\Gamma(m+n)}; m, n > 0$ (b) Prove that $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}; m,n,>0$
- StudentBounty.com Q.6. (a) Let A be a sequentially compact subset of a matrix space X. Prove that A is totally bounded. (10)
 - (b) Let A be compact subset of a metric space (X,d) and let B be a closed subset of X such that $A \cap B = \Phi$ show that d(A,B) > 0(10)

SECTION – B

- Show that if tanZ is expanded into Laurent series about $Z = \frac{11}{2}$, then (10)**Q.7.** (a)
 - Principal is $\frac{-1}{z \Pi/2}$ (i)
 - (ii) Series converges for $0 < |Z \frac{\Pi}{2}| < \frac{\Pi}{2}$

(b) Evaluate
$$\frac{1}{2\Pi i} \oint_C \frac{e^{-z}}{z^2(z^2+2z+2)} dz$$
 around the circle with equation $|z|=3$. (10)

Q.8. (a) Expand
$$f(x) = x^2$$
; $0 \le x \le 2\Pi$ in a Fourier series if period is 2Π . (10)

(b) Show that
$$\int_{0}^{\infty} \frac{\cos x \, dx}{x^2 + 1} = \frac{\Pi}{a} e^{-x}; x \ge 0$$
 (10)

Let f(z) be analytic inside and on the simple close curve except at a pole of **Q.9.** (a) order m inside C. Prove that the residue of f(Z) at a is given

by
$$a_{-1} = \lim_{Z \to a} \frac{1}{(m-1)!} \frac{1}{dz^{m-1}} \{ (z-a)^m f(z) \}$$
 (10)

(b) If f(z) s analytic inside a circle C with center at a, then for all Z inside C.

$$f(z) = f(a) + f'(a)(z-a) + f''\frac{(a)}{2!}(z-a)^2 + f'''\frac{(a)}{3!}(z-a)^3 + \dots$$
(10)
