FEDERAL PUBLIC SERVICE COMMISSION

COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BPS-17, UNDER THE FEDERAL GOVERNMENT, 2005

PURE MATHEMATICS, PAPER-I

TIME ALLOWED: THREE HOURS

Student Bounty Com MAXIMUM MARKS: 100

Attempt FIVE questions in all, including QUESTION NO.8 which is

COMPULSORY. Select TWO question from each SECTION, all questions carry

EQUAL marks.

SECTION - I

(a) If f is a homomorphism of a group G into a group G with kernel K, prove that 1k is a normal subgroup of G.

10

10

(b) If G is a group, then A(G), the Set of all automorphisms of G, is also a group,

2-(a) If D is a commutative integral domain with unity and has finite characteristic n, prove that n is prime number.

08

(b) If R in a commutative ring with unity and M is an ideal of R, prove that M is a maximal ideal of R if and only if R/M is a field.

12

3-(a) If W is a subspace of finite-dimensional vector space V, prove that

08

 $\dim W \leq \dim V$ and $\dim V/W = \dim V - \dim W$.

12

(b) Let A be an $n \times n$ matrix prove that det A=0 if and only if rank A is less than n.

08

(a) For what values of K the equations

 $(5-K)x_1+4x_2+2x_3=0$

 $4x_1 + (5-k)x_2 + 2x_3 = 0$

 $2x_1 + 2x_2 + (2 - k)x_3 = 0$

have non-trivial solutions. Find the solutions.

(b) Let V be finite dimensional vector space over a field F and A(V) the algebra of linear Transformations on V. prove that $\lambda \in F$ is an eigen value of $T \in A(V)$ if and only if $vT = \lambda v$ for some $v \neq 0$ in V.

12

- 5- (a) Find the pedal equation of the cardiode $r = a(1 + \cos \theta)$.
 - (b) Find the center of curvature of the parabola $x^2 = 4y$ at the point (4,1).
- 10 and. 10
- 6- (a) Find the volume of a tetrahedron whose vertices are (1,-1,2), (2,0,1) (0,-2,1) and (-2,2,1)
- (b) The normal at a point P of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ meets the coordinates planes in G_1, G_2, G_3 respectively. Prove that the ratios $PG_1: PG_2: PG_3$ are constant.
- 10
- 7- (a) Define the involute and evolute of a space curve. Prove that the tangent to the involute is parallel to the principal normal to the given cutve.
- 10
- (b) If the curve of intersection of two surfaces is a line of curvature on both, prove that the surfaces cut at a constant angle.
- 10
- 8- (a) Write only the correct choice in the answer book. Do not reproduce the less than n.
 - (i) The additive group of all rational number is:
 - (a) Torsion free
 - (b) Finitely generated
 - (c) Cyclic
 - (d) None of these.
 - (ii) Every group of order 25 must be
 - (a) Cyclic
 - (b) Nonabelian
 - (c) Abelian
 - (d) None of these.
 - (iii) The order of the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 2 & 5 & 1 \end{pmatrix}$ is
 - (a) 5
 - (b) 6
 - (c) 7
 - (d) None of these.

Contd.....

- (x) The equation of the surface of revolution obtained by rotating the curve $x^2 + 2y^2 = 8$, z = 0 about y axis is.
 - (a) $x^2 + 2y^2 + 2z^2 = 8$
 - (b) $x^2 + 2y^2 + z^2 = 8$
 - (c) $x^2 + 2z^2 = 8$
 - (d) None of these.
- (xi) If the tangent at a point P on a parabola meets the directrix in K, then angle KSP (S focus) is
 - (a) Right angle
 - (b) Straight angle
 - (c) Obtuse angle
 - (d) None of these
- (xii) The sum of the focal distances of a point P on an ellipse is
 - (a) Variable with P
 - (b) Greatest when P is at an end of major axis
 - (c) Constant
 - (d) None of these.
- (xiii) If field F has finite order q, then for every $a \in F_s$
 - (a) $a^{q-1} = 0$
 - (b) $a^{q} = a$
 - (c) $a^q = 0$
 - (d) None of these.
- (xiv) Let A be an n x n matrix. Then det A=0 if and only if
 - (a) Rank A (n
 - (b) Rank A) n
 - (c) Rank A=n
 - (d) None of these.
- (xv) A square matrix A such that $A^n = 0$ for some positive integer n is called
 - (a) Idempotent
 - (b) Involutory
 - (c) Nilpotent
 - (d) None of these.

Contd.....

PURE MATHEMATICS, PAPER-1:

- (iv) If a group G has finite order divisible by n then
 - (a) G contains a subgroup of order n
 - (b) G contains an element of order n
 - (c) G need not contain an element of order n.
 - (d) None of these.
- (v) The multiplicative group of non zero elements of a finite field is
 - (a) Of prime order
 - (b) Of prime power order
 - (c) Cyclic
 - (d) None of these.
- (vi) The envelope of the normal plane of a twisted curve is called developable
 - (a) Osculating.
 - (b) Polar.
 - (c) Rectifying.
 - (d) None of these.
- (vii) The Gauss curvature of a surface at any point is the _____ of the principal curvatures.
 - (a) Difference
 - (b) Sum
 - (c) Product
 - (d) None of these.
- (viii) The theorem $Kn = K\cos \theta$ connecting normal curvature in any direction with the curvature of any other section through the same tangent is called.
 - (a) Meunier's theorem.
 - (b) Euler's theorem.
 - (c) Dupin's theorem.
 - (d) None of these.
- (ix) The envelope of the family $x^2 + y^2 4az + 4a^2 = 0$ is

(a)
$$x^2 + y^2 = yx$$

- (b) xyz = 1
- (c) $x^2 + y^2 = z^2$
- (d) None of these.

Contd.....

Student Bounty.com

Student Bounty Com

- (a) dim W=dim V + dim (Kerf)
- (b) dim V=dim(Kerf) + dim (imf)
- (c) $\dim V = \dim W + \dim (\inf)$
- (d) None of these.

(xvii) The perpendicular distance of the point (2,2,1) from the line

$$\frac{x-1}{2} = \frac{y+1}{3} = Z$$
 is

- (a) 2
- (b) 3
- (c) $\sqrt{\frac{5}{7}}$
- (d) None of these.

(xviii) The cylindrical coordinates of a point with spherical polar coordinates

$$\left(3,\frac{\pi}{6},\frac{\pi}{4}\right)$$
 are

(a)
$$\left(\frac{3}{\sqrt{2}}, \frac{\pi}{6}, \frac{3}{\sqrt{2}}\right)$$

(b)
$$\left(\frac{3}{4}, \frac{\sqrt{2}}{3}, 6\right)$$

(c)
$$\left(2, \frac{\pi}{2}, l\right)$$

(d) None of these.

(xix) A set of 4 vectors in a 3-dimensional vector space must be

- (a) Linearly independent
- (b) A basis
- (c) Linearly dependent
- (d) None of these

(xx) If A,B are matrices such that AB exists and is the zero matrix, then

- (a) A must be zero matrix.
- (b) B must be zero matrix.
- (c) Neither A nor B need be zero matrix
- (d) None of these.

FEDERAL PUBLIC SERVICE COMMISSION

COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BPS-17, UNDER THE FEDERAL GOVERNMENT, 2005

PURE MATHEMATICS, PAPER-II

TIME ALLOWED: THREE HOURS

AMISSION
LENT TO POSTS
MENT, 2005
LL
MAXIMUM MARKS: 100

NOTE:

Attempt FIVE questions in all, including QUESTION NO.8 which is COMPULSORY. Select TWO question from each SECTION, all questions carry EQUAL marks.

SECTION - I

1 (a) Evaluate : $\lim_{x\to 0} \frac{e^{2x} - e^{-2x}}{\ln(1+x)}$

06

(b) If f is continuous on [a,b] and differentiable on (a,b), then there exist a number C in (a,b) such that f(b) - f(a) = b-a f'(c).

06

(c) If \sum an converges absolutely, prove that \sum an converges. Give an example to show that the converse is not true.

08

(a) By evaluating both repeated integrals show that:

08

$$\int_{0}^{1} \left[\int_{0}^{1} \frac{x - y}{(x + y)^{3}} dy \right] dx \neq \int_{0}^{1} \left[\int_{0}^{1} \frac{x - y}{(x + y)^{3}} dx \right] dy$$

(b) Find the whole length of the cardioid $r \neq a$ (1+sin θ).

06

(c) Let
$$\sum_{n=1}^{\infty} Mn$$
 be a convergent series of positive term, and let $|f_n(x)| \le$

06

 M_n for all x in [a,b] and all n. prove that $\sum_{x=1}^{\infty} f_n(x)$

converges uniformly in [a,b]

3

2

(a) Let f be Riemann integrable on [a,b] and let, F(x) = Prove that F is Continuous on [a,b]. if f is continuous at a point c in (a,b), prove that f'(c) = f(c).

10

(b) let
$$f(x, y) = \frac{xy}{\sqrt{x^2 + y^2}}$$
 when $(x, y) \neq (0,0)$ and $f(0,0) = 0$

prove that f is continouse possesses partial dervatives but is not differentiable at (0,0).

Contd.....

PURE MATHEMATICS, PAPER-IL:

- (a) Let x,y be metric spaces, $f: x \to y$ a function and $C \in X$. Prove that f is continous at C if and if $\lim_{n\to\infty} f(xn) = f(C)$
 - whenever $(x_n \text{ is a sequence in } x \text{ coverging to } C.$
 - (b) let (x,d) be a metric space. Define the term: Cauchy sequence and completeness. Prove that if (x,d) is complete and A is a closed subset then (A,d) is also complete. If A is a compact subset of X, is (A,d) complete ? justify your answer.

08

12

06

06

10

Section -II

(a) Use De Moivre's Theorm to prove that 5

$$\sum_{k=0}^{8} \cos(\frac{2k\pi}{9}) = 0$$

(b) Let
$$f(Z) = \begin{cases} 0, & z = 0 \\ u(x, y) + iv(x, y), & z \neq 0, \end{cases}$$

$$v) + iv(x, y), z \neq 0,$$

where
$$u(x, y) = (x^3 - y^3)/(x^3 + y^2)$$

 $v(x, y) = (x^3 + y^3)/(x^2 + y^2)$

Show that the cauchy-Riemann equations are satisfied at the origin but f'(0) does not exit.

(a) State and prove Liouville's theorem. 6

 $\int_{0}^{9z^2 - iz + 4} dz$, where c is the circle |z|=2 in the positive direction.

(c) Use Taylor's series, prove that:

$$\frac{1}{z^2} = \frac{1}{4} \sum_{n=0}^{\infty} (-1)^n (n+1) \left(\frac{z-2}{2}\right)^n \text{ for (| } z-2 | < 2).$$

- (a) Find the residues of tan z at its poles. 7
 - 10 (b) Use the method of residues to evaluate $\int e^{\cos\theta} \cos(\sin\theta - 3\theta) d\theta$

PURE MATHEMATICS. PAPER-II:

- (vii) $f(x) = \frac{\sin x}{x}, x \in (0, \frac{\pi}{2})$, is
 - (a) strictly increasing
 - (b) strictly decreasing
 - (c) unbounded.
 - (d) None of these
- (iii) $\lim_{n\to\infty} (1+\frac{x}{n})^n equals$
 - (a) 1
 - (b) Dose not exit
 - (c) ex
 - (d) None of these.
- (ix) Suppose $f(x) = \sum_{n=0}^{\infty} Cnx^n$, where the series is convergent for all |x| < R, then f is
 - (a) continous but not differentiable
 - (b) differentiable
 - (c) monotonic
 - (d) None of these.
- (x) The interval (0,1) is
 - (a) A countable set.
 - (b) A copmpact set
 - (c) An uncountable set
 - (d) None of the above.
- (xi) Let $e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$ then e is
 - (a) Rational
 - (b) Irrational
 - (c) Algebraic
 - (d) None of these
- (xii) The series $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{1}{n}}}$ is
 - (a) convergent
 - (b) oscillating
 - (c) divergant
 - (d) None of these
- (xiii) the function $f(z) = z^2 e^{-z}$ is
 - (a) Entire.
 - (b) meromorphic
 - (c) bounded
 - (d) None of these.

Contd.....

Student Bounty.com

8. write only the correct choice in the answer book. Do not reproduce the question.

- (i) for all real number a, Limit a/n equals
 - (a) 0
 - (b) ∝
 - (c) 1
 - (d) none of these.
- (ii) the series $\sum_{x=1}^{\infty} \frac{(-1)^x}{x} is$
 - (a) divergent.
 - (b) Convergent.
 - (c) Absolutely convergent.
 - (d) None of these.
- (iii) If f is Riemanns integrable on [a,b], the f must be
 - (a) Continous on [a,b].
 - (b) Differentiable on [a,b].
 - (c) Monotonic on [a,b].
 - (d) None of these.
- (iv) Every closed subset of R, the real line, is
 - (a) Complete.
 - (b) Compact.
 - (c) Bounded.
 - (d) None of these.
- (v) The series $\sum_{n=1}^{\infty} \frac{\sin n}{n^2}$ is

Convergent but not absolutely.

- (a) Absolutely convergent.
- (b) Divergent
- (c) None of these.
- (vi) $\lim_{n \to \infty} x^n e^{-x} (x = 1, 2, 3,)$ equals
 - (a) 0
 - (b) 1
 - (c) ∝
 - (d) None of these.

Contd....

- (a) Goursat theorm
 - (b) Morera theorm
 - (c) Cauchy's inequality.
 - (d) None of these.

Student Bounty.com disjoint domains A simple closed curve divides the complex palne into_ (xv)

- (a) Two.
- (b) Three
- (c) Four
- (d) None of these

(xvi) If a series of complex numbers $\sum_{n=1}^{\infty} z_n$ converges, then $\lim_{n\to\infty} (-1)^n zn$ is

- (a) -1
- (b) Zero
- (c) 1
- (d) None of these.

(xvii)
$$\lim_{n\to\infty} \frac{(n-i)^3}{2n^3+n+2}$$
 equals

- (a) ∝
- (c) zero
- (d) None of the

(xviii) Log(-1+i) = 1/2log2 + iQ, where Q equals

- (b) -3/4
- (c) -1/4
- (d) none of these

(xix) Every compact subset of the complex plane is

- (a) Open.
- (b) Closed and bounded.
- (c) Open and unbounded.
- (d) None of these.

(xx) If z is not an integer, then $\pi(z)\pi(1-z)$ equals

- (b) $z\pi(z)$
- (d) None of these.