FEDERAL PUBLIC SERVICE COMMISSION

COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN PBS-17, UNDER THE FEDERAL GOVERNMENT, 2002

PURE MATHEMATICS, PAPER-I

TIME ALLOWED: THREE HOURS

MAXIMUM MARKS: 100

NOTE:

Attempt FIVE questions in all, including QUESTION NO. 8 which is COMPULSORY. Select at least TWO questions from each of the SECTIONS I and II. All questions carry EQUAL marks.

To.	SECTIONS I and II. All questions carry EQUAL marks.	1(
Que	estion	Mark
	SECTION - I	
(a)		10
(b	State and prove Fundamental theorem of Homomorphism in groups.	10
(a)	(ii) Subrings.	9
(b	Show that the correspondence $a + \mathbf{i}b \rightarrow \begin{bmatrix} a \\ -b \end{bmatrix}$, $a, b \in \mathbb{R}^*$ is an isomorphism of the field C of complex numbers into the ring of 2×2 matrices over \mathbb{R}^* .	11
ļ	· (
(a)	Prove that W is a subspace of V iff it is closed under the operation	08
(b	Show that the yz plane in R is spanned by (0,1,2), (0,2,3) and	06
(c)		06
(a)	If A is an idempotent matrix then prove that (i) B = I - A is an Idempotent matrix, (ii) AB = BA = 0.	06
(b)	Find the eigen values and eigen vectors of $A = \begin{bmatrix} -5 & 2 \\ 2 & -2 \end{bmatrix}$	06 -
(c)	Investigate for what values of a, b the simultaneous equations $x + y + z = 6$, $x + 2y + 3z = 10$, $x + 2y + az = b$, have: (i) No solution (ii) A unique solution (iii) an infinite number of solutions.	08
	SECTION - 11	
(a)	Find the length of one me of the cycloid	07
	$x = b(\theta - \sin\theta), y = b(1 - \cos\theta).$	
	(a) (b) (c) (c)	SECTION—1 (a) Let G be a finite group and H be its Subgroup. Then prove that the order of H divides the order of G. (b) State and prove Fundamental theorem of Homomorphism in groups. (a) Define (i) Commutator Sub group G' of a group G. (ii) Subrings. (iii) Integral Domain. (b) Show that the correspondence a + ib →

PAGE L of NUMPAGES 4

	(c)	Show that the equation of tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at the	06
}		point (x_1, y_1) is $\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$.	
6	(a)	Find the equation of the plane through the points (x_1, y_1, z_1) ,	06
		(x_2, y_2, z_2) and (x_3, y_3, z_3) .	
	(b	Find the Cartesian and spherical polar coordinates of the point P	06
•		with cylindrical coordinates (4, arc Cos $\frac{4}{5}$, 3).	
	(c)	Find the equation of the sphere having the straight line joining the points (2,3,4) and (-2,-3,-4) as a diameter.	08
			7
7	(a)	Define the curvature, the unit principal normal vector and the unit binormal vector of a curve C.	06
]	(b	Find the torsion of the curve C: r(t) = [a cos t, a sin t, ct].	0.7
	(c)	Prove the Serre-Frenet's formula $b' = -\tau \cdot \rho$.	07

COMPULSORY QUESTION

8. Write only the correct choice in the Answer Book. Don't reproduce the statement.

			N. ~L	
l	0,0,	l are the direction Cosines of:	J .	
	(a)	x-axis	(b)	y-axis
	(c)	z-axis	(d)	None of these.
2	AB	=AC ⇒ B=C when	- d	
	(a)	A is Non Singular	(b)	A = 0
	(c)	A-lexists	(d)	None of these.
3	The	angle between the planes x -y - 2z +	3 = 0	and $2x + y - z = 5$ is
	(a)		(b)	$\frac{\pi}{2}$ radians
(((c)	$\frac{\pi}{3}$ radians	(d)	None of these.
4 .	H y	AB = BA, when A and B are square mat	L lrices.	, the multiplication is said to be:
	(a)	Associative	(b)	Reflexive
	(c)	Commutative	(d)	None of these.
5	The perpendicular distance of the point (3,-1,2) from the plane $2x + y - z$			
	(a)	2	(b)	4
	(c)	$\frac{1}{\sqrt{6}}$	(d)	None of these.
	t	• · ·	1	1

PAGE 2 of NUMPAGES 4

PURE MATHEMATICS, PAPER-I

6	$\frac{x^2}{a^2}$	$+\frac{y^2}{b^2} - \frac{z^2}{c^2} = -1 \text{ represents;}$				
•	(a)	Sphere	(b)	Ellipsoid		
	(c)	Hyperboloid of one sheet	(d)	Hyperboloid of two sheets.		
	(e)	None of these.	1			
7	The	radius of the sphere $x^2 + y^2 + z^2 - 4$	x + 2	zy – 6z = 1 is:		
	(a)		(b)	5		
	(c)	10	(d)	None of these.		
8		equation of surface of revolution obtainabout the x-axis is:	ined l	by revolving the curve $x = z^2$. y		
	(a)	$x^2 + y^2 = z^4$	(b)	$x = y^2 + z^2$		
	(c)	$x^2 = z^4$	(d)	None of these.		
9	ax 2	$+ by^2 + 2hxy + 2gx + 2fy + c = 0$ repre	sents	a parabola when:		
···	(a)	$\ln^2 < ab$	(p)	$\ln^2 > ab$		
	(c)	$h^2 = ab$	(d)	None of these.		
10	u. p, b constitute a triple of orthogonal unit vectors which is:					
	(a)	Right Handed	(b)	Left Handed		
	(c)	Orthonormal	(d)	None of these.		
11	An equivalence relation satisfies the following three properties:					
	(a)	Reflexive, symmetric, transitive	(b)	Reflexive, Anti symmetric. transitive		
	(c)	Not Reflexive, symmetric, transitive	(d)	Reflexive, symmetric, Not transitive		
	(e)	None of these.	1			
12	JIF M	1 and N are any two n x n square matric	ces, ti	hen det (MN) equals:		
1	(a)	det M + let N	(b)	det M det N		
	(c)	Matrix MN	(d)	None of these.		
13	II A	is a square matrix, then:	1			
	(a)	$\det 3\Lambda = \det A$	(b)	det 3A = 3 det A		
	(c)	det A¹ ≠ det A	(d)	det A = A		
	(e)	None of these.	1			

		• .		N. S.	
100.00		OVER LATING DARREN			Entra
JKI:		THEMATICS, PAPER-1			1.00L
14	Wh	ich of the following mapping is a Linea	ır Tra	insformation?	175
	(a)	$T(a_1, a_2, a_3) = (a_1, a_2)$	(b)	T(a,b,c) = (a,1)	
	(c)	T(x,y,z) = (x+1,y,z)	(d)	T(x.y) = (x+1.y+1)	
	(e)	None of these.			
15	(R.	+,,): where R is the set of all real number	ers, is	a	
	(a)	Field	(b)	Commutative Ring	,
	(c)	Ring with Identity	(d)	Division Ring	
	(e)	None of these.			
16	Whi	ich of the following are subspaces of R	2?		
	(a)	$\{(a,a): a \in R\}$	(b)	$\{(a,a^2): a \in \mathbb{R}\}$	
	(c)	$\{(a,a+1): a \in \mathbb{R}\}$	(d)	{(a².a): a ∈ R}	
	(e)	None of these.	. ,		
17	Mat	rix A is called Involuntory if:			
	(a)	$\Lambda^2 = \Lambda$	(b)	$A^2 = I$	
	(c)	$\Lambda^{K+1} = \Lambda$	(d).	A' = A	
	(e)	None of these.	7		
18	Whi	ich of the following statements for grou	ıps is	wrong?	
	(a)	$(g^{-1})^{-1} = g$, for every g in G.	(b)	The inverse of the identity element e is e itself in G.	
	(c)	A group contains at least the identity element.	(d)	There is a concept of an empty group.	
	(e)	None of these.			
19	I	en $W: G \rightarrow G'$, from G into G', is a ged epimorphism if:	roup	homomorphism. Then ψ is	
^	(a)	G' = G	(b)	up is 1 -1	
<u> </u>	(6)	ψ is onto G'	(d)	ψ is $1-1$ and onto G' , both	
	(e)	None of these.			
20	A cy	yelic group of order n is generated by:	<u></u>		
\	(a)	n elements	(b)	two elements	
	(c)	One element	(d)	n – 1 elements.	·
	(e)	None of these.	1.		

FEDERAL PUBLIC SERVICE COMMISSION

COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN PBS-17, UNDER THE FEDERAL GOVERNMENT, 2002

PURE MATHEMATICS, PAPER-II

TIME ALLOWED: THREE HOURS

MAXIMUM MARKS: 100

Student Bounty.com

NQTE:

Attempt FIVE questions in all, including QUESTION NO. 8 which is COMPULSORY. Select at least TWO questions from each of the SECTIONS I and H. All questions carry EQUAL marks.

Question				
	SECTION – I			
(a)	Prove that an open sphere in a metric space X is an open set	07 V		
(b)	The intersection of any two open sets and hence of any number of	07		
]				
(c)	Define: (i) Interior point of A (ii) Exterior point of A, (iii) Boundary point of A. (iv) Closure of A; where A is a subset of a subset of a topological space X.	06		
(a)	Let $X = \{x, y, z\}$, $\tau = \{\Phi, X, \{x\}, \{y, z\}\}$. Define $g: X \rightarrow X$ by	06		
	g(x) = y, g(y) = z, g(z) = x. Verify whether g is continuous or not.			
(b)	Prove that $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$	08		
(c)	Show that $\beta(m,n) = \beta(n,m)$; also evaluate $\Gamma(\frac{5}{2})$.	06		
(a)	Evaluate $\lim_{x \to \frac{\pi}{2}} \frac{\tan 3x}{\tan x}$.	06		
(b)	Find the volume of the tetrahedron bounded by the coordinate planes and the plane $\frac{x}{a} + \frac{z}{c} = 1$, where a, b, c are positive constants.	08		
(c)	Calculate $\int_{-1}^{4} \frac{dx}{(x-2)^3}$	06		
(a)	Test the convergence of the series $\sum_{n=1}^{\infty} \frac{n}{(n+1)(n+2)}$.	06		
(b)	Prove that the least perimeter of an isosceles triangle in which a	06		
ľ				
(c)	State and prove Fundamental theorem of Integral calculus.	08		
	<u>SECTION - 11</u>			
(a)	Expand Cos ⁵ 0 Sin ³ 0 in series of Sines of multiples of 0.	08		
(b)	Find the 6 Sixth roots of -1.	06		
(c)	Prove that $\operatorname{Cos} h^{-1}z = \operatorname{Log}(z + \sqrt{z^2 - 1})$.	06		
(a)	Expand $f(x) = \sin x$ in a Fourier cosine series in the interval $0 \le x \le \pi$.	07		
	(a) (b) (c) (a) (b) (c) (c) (c)	SECTION - 1 (a) Prove that an open sphere in a metric space X is an open set. (b) The intersection of any two open sets and hence of any number of open sets in X is open. (Prove for topological space (X, τ)). (c) Define: (i) Interior point of A (ii) Exterior point of A. (iii) Boundary point of A. (iv) Closure of A; where A is a subset of a subset of a topological space X. (a) Let X = (x, y, z), τ = {Φ, X, {x}}, {y, z}}. Define g: X → X by g(x) = y, g(y) = z, g(z) = x. Verify whether g is continuous or not. (b) Prove that β(m, n) = Γ(m)Γ(n) Γ(m + n) (c) Show that β(m, n) = β(n, m); also evaluate Γ(½). (a) Evaluate lim tan 3x / (x - 2) / (x		

+- PAGE 1-1 of +- NUMPAGES 4

PURE MATHEMATICS, PAPER-II

	(b)	Verify that $u = x^2 - y^2 - y$ is harmonic in C and find a conjugate harmonic function v of u.	07.
	(c)	Evaluate $\oint_{c} \frac{dz}{z-c}$, c is the circle $ z = 2$ (counter clockwise).	06
7	(a)	Find the center and radius of convergence of the power series	06
		$\sum_{n=0}^{\infty} \frac{(z-2i)^n}{5^n}$	
	(b)	Define the following terms: (i) Pole (ii) Isolated essential singularity (iii) Zero of an analytic function (iv) Residue.	06
	(c)	Evaluate $\oint_{c} \frac{z}{z^2 - \frac{1}{4}} dz$, where c is the unit circle (counter clock wise).	08

COMPULSORY QUESTION

8. Write only the correct choice in the Answer Book. Don't reproduce the statement.

I	The function $f(x) = \frac{x^2 - 9}{x - 3}$ is discontinuous at:					
	(a)	x = 0	(b)	x == 3		
	(c)	x = 1	(d)	None of these.		
2	f(x)	= Sin x has a minimum value at:				
	(a)	x = 0	(b)	$x = \frac{\pi}{2}$		
	(c)	$x = \frac{3\pi}{2}$	(d)	None of these.		
3	lim		- I			
	(a)	0	(b)	1		
	(c)	c	(d)	-е		
4	i)er	ivative of the function $f(x) = \ln x$ at $x = -\frac{1}{2}$	= 0 is	:		
	(a)	I	(b)	0		
	(c)	ω	(d)	None of these.		
5	For	a decreasing function g, let $x_1 < x_2$; the	hen:			
	(a)	$g(x_1) > g(x_2)$	(b)	$g(x_1) < g(x_2)$		
	(c)	$g(x_1) = g(x_2)$	(d)	None of these.		

PAGE 2 of NUMPAGES 4

PURE MATHEMATICS, PAPER-II

6	Tangent to the parabola $y^2 = 5x$ at (5.5) is:			
	(a)	y = x + 5	(b)	y = x - 5
	(c)	y == x	(d)	None of these.
7.	(20)	-3 – L) is equal to:		,
•	(a)	(2, -6)	(b)	(-2, 6)
	(c)	(2, 6)	(d)	(-2, -6)
8	Whi	ch of the following statements is not co	orrec	1?
	(a)	e ^z is never zero	(b)	5z>z
	(c)	$e^z = 1$ iff z is an integral multiple of 2π i	(d)	$\arg(z_1z_2) = \arg z_1 + \arg z_2.$
9	$\int_{0}^{\pi} sr^{2}$	² x dx is equal to:		
	(a)	l	(b)	Zero
	(c)	∞	(d)	None of these.
10	Γ(1 2) is equal to:		> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	(a)	π	(b)	$\sqrt{\pi}$
	(c)	1/2	(d)	Zero.
11	The	Jocobian of the rotation $x = u \cos \alpha$	vsin	α , $y = u \sin \alpha + v \cos \alpha$ is:
	(a)	Uv	(b)	α
	(c)		(d)	None of these.
12	\int_0^1	$\int_1^2 \int_2^3 dx dy dz$ is equal to:	· · · · · · · · · · · · · · · · · · ·	
	(a)	1	(b)	2
	(c)	3	(d)	None of these.
13	x -	$\frac{x^{3}}{3!} \frac{x^{3}}{5!} - \frac{x^{7}}{7!} + \dots \text{ is the expansion of:}$		•
	(a)	cos x	(b)	e *
\	(c)	$\frac{1}{1-x}$	(d)	None of these.

FPAGE 3: of FNUMPAGES 41

PURE MATHEMATICS, PAPER-II

14	Wh	ich of the following statements is not co	orrect	?			
	(a)	An absolutely convergent series is convergent.	(b)	$\sum_{i=1}^{\infty} \frac{1}{n} $ is convergent			
	(c)	$\sum_{i=1}^{\infty} n \text{ is divergent}$	(d)	$ \begin{cases} 1 + (-1) & n \\ 1 + (-1) & n \end{cases} $ oscillates infinitely.			
15	The	period of cos x sin x is:	.1				
	(a)	π 2	(b)	2π			
	(c)	π	(d)	Arbitrary.			
16	Let	the metric space be R and let $x_0 = 1$ are	nd 🕞	Then $S_{\frac{1}{2}}(I)$ is given by:			
	(a)	$\left[\frac{1}{2},1\right]$	(4)	10, 7/2 [
	(c)	$\left[1\frac{1}{2},\frac{3}{2}\right]$	(a)	None of these.			
17	Which of the following statements is not correct?						
	(a)	If gof is injective, then f is injective.	(b)	If gof is surjective, then g is surjective.			
	(c)	If gof is surjective, and g is injective. then f is surjective.	(d)	If gof is injective, and f is surjective, then g is surjective.			
	Note: $f: A \rightarrow B$ and $g: B \rightarrow C$ are functions.						
18	Select the correct statement;						
	(a)	lint (Int A) ≠ Int (A)	(b)	$Int(A\cupB)=Int(A)\cupInt(B)$			
	(c)	$\operatorname{Iut}(A \cap B) = \operatorname{Int}(A) \cap \operatorname{Int}(B)$	(d)	$\operatorname{Ext}(A \cup B) \neq \operatorname{Ext}(A) \cap \operatorname{Ext}(B)$			
		where A and B are any two subsets of	a top	ological space.			
10	fcot z dz is equal to:						
C	(a)	2 πί,	(b)	πί			
7	(c)	Zero	(d)	None of these.			
	who	where c is the unit circle (Counter clockwise).					
20	The	image of the region $1.5 \le z < 2.1$ und	er the	: mapping $w = z^2$ is:			
	(a)	2.25 ≤ w < 4.41	(b)	$ 1.5 \le \mathbf{w} < 4.41$			
	(c)	$ 2.25 \le w < 2.1$	(d)	None of these.			

PAGE 4 of NUMPAGES 4