

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BPS-17 UNDER THE FEDERAL GOVERNMENT, 2010

PHYSICS, PAPER-II

PHVSICS PAPER	FEI REC	FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BPS-17 UNDER THE FEDERAL GOVERNMENT, 2010 PHYSICS, PAPER-II		Roll Numeron Boundary	
TIME ALLOW	ED.	(PART-I)	30 MINUTES	MAXIMUM MARKS:20	
TIME ALLOWED:		(PART-II)	2 HOURS & 30 MINUTES	MAXIMUM MARKS:80	
* * *		mpt PART-I (I	MCQ) on separate Answer Sheet	which shall be taken back	

NOTE: (i) First attempt PART-I (MCQ) on separate Answer Sheet which shall be taken back after 30 minutes.

- (ii) Overwriting/cutting of the options/answers will not be given credit.
- (iii) Use of Scientific Calculator is allowed.

	PART – I (M				
	(COMPULSO	<u>PRY)</u>			
Q.1.	Select the best option/answer and fill in the app	ropri	ate box on the Ans	wer S	Sheet. (20)
(i)	A Watt – sec is a unit of:				
	(a) Force (b) Energy	(c)	Power	(d)	None of these
(ii)	The direction of any magnetic induction effect is s	uch as	s to oppose the caus		he effect. This is:
	(a) Coulumb's Law (b) Ampere's Law	(c)	Lenz's Law	(d)	None of these
(iii)	A magnetic field cannot:				
	(a) accelerate a charge	(b)	Exert a force on a charge		
	(c) change the kinetic energy of a charge	(d)	None of these		
(iv)	The inverse of resistivity is called Conductivity. It				
	(a) Ohm-1 (b) ohm-metre	(c)	(ohm-meter) ⁻¹	(d)	None of these
(v)	An LRC Circuit has $R = 4\Omega$, $X_c = 3$ and $X_L = 6$, the				27 0.1
	(a) 5Ω (b) 7Ω	(c)	13 Ω	(d)	None of these
(vi)	A "step-down" transformer is used to:	()	T .1 1.	/ 1°	27 04
	(a) increase the power (b) decrease the voltage		Increase the voltage	e (d) None of these
(vii)	Electrical potential is the potential energy per unit		Г	(1)	NI C.11
	(a) Charge (b) Voltage	(c)	Force	(d)	None of these
(viii)	The force on a charge moving with the velocity in (x) $F = (x/x) P$			-	
(:)	(a) $F = (q/v \times B)$ (b) $F = (qv \times B)$		F = (qv + B)	(d)	None of these
(ix)	A changing current "i" in any circuit induces an en (a) $e = di/dt$ (b) $E = i d\Phi/dt$		· ·		
(**)	` /	(c)	e = - L di/dt	(d)	None of these
(x)	Inductive reactance of an inductor is: (a) $X_I = \omega^2 L$ (b) $X_L = \omega/L$	(a)	$e = -L \frac{di}{dt}$	(4)	None of these
(vi)	(a) $X_L = \omega^2 L$ (b) $X_L = \omega/L$ The resonant frequency of an LC-Circuit is:	(c)	e – -L ai/ai	(d)	None of these
(xi)	(a) $f = 2\Pi LC$ (b) $f = 1/2\Pi\sqrt{LC}$	(c)	f = 1/2LC	(d)	None of these
(xii)	The deliberate addition of an impurity element in a				None of these
(AII)	(a) doping (b) annealing	(c)	mixing	(d)	None of these
(xiii)	The conversion of AC into DC is called:	(0)	mixing	(u)	None of these
(AIII)	(a) amplification (b) rectification	(c)	modulation	(d)	None of these
(xiv)	The Laser light is:	(0)	modulation	(u)	rone of these
(2111)	(a) monochromatic (b) coloured	(c)	chromatic	(d)	None of these
(xv)	The Laser light may be obtained from:	(0)	Cincinatio	(u)	rone of these
()	(a) quartz crystal (b) NaCl crystal	(c)	ruby crystal	(d)	None of these
(xvi)	The emission of photoelectrons in photoelectric ef			(-)	
(')	(a) threshold frequency (b) intensity of light	(c)	Nature of metal	(d)	None of these
(xvii)	Which one of the following is NOT needed in Nu			()	
, ,	(a) fuel (b) accelerator	(c)	moderator	(d)	None of these
(xviii)					
, ,	initial activities:		, ,		
	(a) 105 days (b) 280 days	(c)	35 days	(d)	None of these
(xix)	Most of the energy produced in Sun is due to:	` ′	-	` /	
` /	(a) Nuclear fusion (b) Chemical reaction	(c)	Nuclear Fission	(d)	None of these
(xx)	A U-235 nucleus will split when it captures:			. /	
	(a) an α-particle (b) e.m. radiation	(c)	neutron	(d)	None of these

PHYSICS, PAPER-II

PART – II

	\sum_{\sum_{\text{\tin}\exiting{\text{\texitin}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi\text{\texi}\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\texi}\text{\text{\text{\text{\text{\text{\texi}\text{\text{\texi}\tint{\text{\text{\text{\texi}\text{\text{\text{\texi}\text{\texi}\text{\texit{\ti}\tinttitt{\texi}\tint{\texitit{\texitilex{\tiint{\texitil{\ti}\					
PHYSICS, PAPER-II PART – II						
NOTE:	 (i) PART-II is to be attempted on the separate Answer Book. (ii) Attempt ONLY FOUR questions from PART-II. All questions carry EQUAL mar (iii) Extra attempt of any question or any part of the attempted question will not considered. (iv) Use of Scientific calculator is allowed. 					
Q.2. (a) (b)	State and prove Gauss's Law in electrostatics and express the law in differential forms. Find the electric intensity at a point outside a volume distribution of charge confined spherical region of radius R.	(14) l into a (06)				
Q.3. (a) (b)	State and explain Ampere's Law. Derive an expression for the value of 'B' inside a soleno A thin 10 cms long solenoid has a total of 400 turns of wire and carries a current of 0.20 a	(14)				
Q.4. (a)	Calculate the field inside near the centre. Given $\mu = 12.57 \times 10^{-7} \text{ T} - \text{m/A}$ How a Semi Conductor diode is used as a half wave and full wave rectifier?	(06)				
(b) (c)	What are the transistors? Give Construction and Symbol of PNP and NPN transistor. The resistivity of a metal increases with increase in temperature while that of a semi condecreases. Explain.	(07)				
Q.5. (a) (b)	Discuss briefly the wave nature of matter and obtain an expression of de Broglie's wave for matter waves. Calculate the de Broglie's wavelength of a 0.20kg ball moving with a speed of 15 m/s.	elength (14) (06)				
Q.6. (a) (b)	Derive Einstein's photoelectric effect on the basis of quantum theory and derive Einphotoelectric equations. Calculate the work function of Na in electron-volts, given that the threshold wavelength A° and $h = 6.625 \times 10^{-34} J\text{-S}$	(14)				
Q.7. (a) (b) (c)	Define the terms decay constant, half life and average life as applied to a radioactive substitute relation between them. The half life of Radium is 1590 years. In how many years will one gm of pure element (one centigram and (b)be reduced to one centigram. When a nucleus emits a γ – ray photon, what happens to its atomic number and its actual	(11) (a)loose (07)				
Q.8.	write notes on ANY TWO of the following: (a) Self and Mutual Inductance (b) Pauli's Exclusion Principle (c) Compton Scattering	(02) (20)				

Page 2 of 2