COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN PBS-17, UNDER THE FEDERAL GOVERNMENT, 2002

APPLIED MATHEMATICS, PAPER-I

TIME ALLOWED: THREE HOURS

MAXIMUM MARKS: 100

KudentBounty.com

NOTE:

Attempt FIVE questions in all, including QUESTION NO. 8 which is COMPULSORY. Select at least TWO questions from each of the SECTIONS I and II. All questions carry EQUAL marks.

- (a) Find an equation for the plane passing through the points 10 $P_1(2,-1,1), P_2(3,2,-1) \text{ and } P_3(-1,3,2).$
 - Prove (i) $\nabla \times (\nabla \phi) = 0$ (ii) $\nabla \cdot (\nabla \times \vec{A}) = 0$ 10
- (a) If $\vec{F} = y\hat{i} + (x 2xz)\hat{j} xy\hat{k}$, Evaluate $\iint (\nabla \times \vec{F}) \cdot \hat{n} dS$ where S is the
 - surface of the sphere $x^2 + y^2 + z^2 = a^2$, above the xy plane.
 - (b) Verify the divergence theorem for $A = 4x \hat{i} + 2y^2 \hat{j} + z^2 \hat{k}$ taken over. the region bounded by $x^2 + y^2 = 4$, z = 0 and z = 3.
 - (a) Forces of magnitude P, 2P, 3P, 4P act respectively along the sides AB, BC, CD, DA of a square ABCD of side a and forces each of magnitude $(8\sqrt{2})$ P act along the diagonals BD, AC. Find the magnitude of the resultant force and the distance of its line of action from A.
 - Find the Centriod of the arc of the curve $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{1}{3}}$ lying in the first quadrant.

SECTION - II

- (a) Find the radial and transverse components of the velocity of a particle 10 moving along the curve $ax^2 + by^2 = 1$ at any time t if the polar angle $0 = ct^2$.
 - (b) A particle is projected vertically upwards with a velocity $\sqrt{2gh}$ and another let fall from a height h at the same time. Find the height of the point where they meet each other.

PAGE I NUMPAGES

APPLIED MATHEMATICS, PAPER-I

- Student Bounty.com 5 (a) A particle of mass m'is attached by a light and inextensible string of length ℓ to a ring of mass m, free to slide on a smooth horizontal rod. Initially the two masses are held with a string taut along the rod and then they are set free. Prove that the greatest angular velocity of the string has magnitude $\sqrt{\frac{2g(m+m')}{}}$
 - Prove that the speed required to project a particle from a height h to fall a horizontal distance a from the point of projection is at least $\sqrt{g\left(\sqrt{a^2+h^2-h}\right)}$.
- (a) Discuss the motion of a particle on a circle, 10 Show that the law of force towards the pole, of a particle describing χ_0 the curve $r^n = a^n \cos n\theta$ is given by f =
- 10 (a) Find the moment inertia of the circle $x^2 + y^2 = a^2$ about the line AB, BC are two equal rods freely-hinged at B and lie in a straight line 10 on a smooth table. The end A is struck by a blow P \(\pm\) to AB. Show that the resulting velocity of A is $3\frac{1}{2}$ times that of B.

COMPULSORY QUESTION

8. Write only the correct choice in the Answer Book. Don't reproduce the statement.

1	lf Ä.($(\vec{B} \times \vec{C}) = 0$, then vectors \vec{A} , \vec{B} , \vec{C}	are:	-
	(a)	Collinear	(b)	Coplanar
	(c)	Parallel	(d)	None of these.
2 -	II Ā.	$\vec{B} = 0$, then the vectors are:		
	(a)	Perpendicular	(b)	Parallel
	(c)	Collinear	(d)	None of these,
3	The dir	ectional derivative of \$\phi\$ in the direction	ection	of ∇φ is:
	(a)	Maximum	(b)	Minimum
	(c)	Constant	(d)	None of these.
4	lf ∇.	$\vec{V} = 0$, the motion of the fluid is:		
	(a) ·	Continuous	(b)	Discontinuous
,	(c)	Irrolational	(d)	None of these.

APPLIED MATHEMATICS, PAPER-I

				2	
<u>1E</u>	<u>D M/</u>	ATHEMATICS, PAPER-I			
	The s	urface integral is:	·	The same of the sa	Title
	(a)	Single integral	(b)	Double integral	
	(c)	Friple integral	(d)	None of these.	
	The fe	orce field F is conservative if:	.l		
	(a)	V , $\hat{I}^{i}=0$	(b)	$\nabla \times \vec{F} = 0$	
	(c)	$\nabla \vec{\mathbf{F}} = 0$	(d)	$\nabla \cdot \nabla \times \vec{F} = 0$	D .
	Whie	h one is correct:	<u>.l</u>		
	(a)	V. V×φ	(b)	V×V Ä	i
	(c)	$\nabla \times \nabla \times \tilde{\Lambda}$	(d)	VXV b	
	The n	ninimum number of forces required	for e	quilibrium are:	
	(a)	1	(þ)	2	,
	(c)	3	(d)	4	
)	The f	riction is maximum if it is:			-
	(a)	Static	(b)	Limiting	
	(c)	Dynamic	(d)	None of these.	
()	The r	esultant of a system of forces actin	g on a	rigid body is always:	_
	(a)	A force	(b)	A couple	-
	(c)	A force and a couple	(d)	None of these.	
1	For a	particle moving in a central force t	he an	gular momentum is:	,
	(a)	Conserved	(b)	Zero	_
	(c)/(Variable	(d)	None of these.	
2	The c	center of mass of a semi-circular lain:	nina	$x^2 + y^2 = a^2$ in the upper half	
	(n)	The origin.	(b)	x-axis	
7	(c)	y-axis.	(d)	None of these.	
3		amplitude of oscillation of a particled, then its time period is:	de per	forming simple harmonic is	
	(a)	Doubled	(b)	Halved	
	(c)	Unchanged	(d)	None of the sc.	
	L	1		1	

PAGE 3. of NUMPAGES 4

APPLIED MATHEMATICS, PAPER-I

		* * * * * * * * * * * * * * * * * * * *		15	<u> </u>
				Tak	
<u>JED</u>) MAT	THEMATICS, PAPER-I			THE
4	The rati	io of coefficient of static friction a	and ec	pefficient of kinetic friction is:	8
((a)	Greater than 1	(b)	Less than I	
	(c)	Equal to 1	(d)	None of these.	
5 1	The sin	nple harmonic motion, the accelera	ation	at distance x is:	
(a)	λ x	(b)	λx	
((c)	λ x ²	(d)	$-\lambda x^2$	
6 1	The ran	nge of the projectile is maximum, i	if the	angle of projection is:	•
((a)	π 3	(b)	π 4	
((c)	π 6	(d)	2n 3	
7 1	The trai	nsverse component of acceleration	ris:		
((a)	i	(p)	ro	
((c)	2r0 + r0	(d)	$\ddot{r} - r(\theta)^2$	1
8 1	The arb	pit of a planet is:	~~·		
	(a)	Circle	(b)	Eclipse	
((e)	Hyperbola	(d)	Parabola	
9 1	The ang	gular speed of the earth about its a	xis is		
	(a)	7/29×10 'rad/sec	(b)	7.5×10 ⁻⁵ rad/sec	
((6)	6.89 rad/sec	(d)	None of these.	
	The mo	oment of inertia of a hollow sphere	of ra	idius a and mass M about a	
	(a) /	$\frac{1}{2}$ Ma ²	(b)	$\frac{1}{3}$ Ma ²	
	/ (c)	Ma²	(d)	2Ma ²	

APPLIED MATHEMATICS, PAPER-II

TIME ALLOWED: THREE HOURS MAXIMUM MARKS: 100

NOTE: Attempt FIVE questions in all, including QUESTION NO. 8 which is COMPULSORY. Select at least TWO questions from each of the SECTIONS I and H. All questions carry EQUAL marks.

Marks

SECTION - I

1 (a) Solve
$$(2y + 3x + 1)dx - (3x + 2y - 1)dy = 0$$

(b) Solve $y'' - 4y' + 5y = 2x^2e^{2x} + 4e^{2x}Sin x$ 10

2 (a) Using the variation of parameters Method, solve the differential equation
$$\frac{d^2y}{dx^2} + a^2y = b\sec^2ax$$
.
(b) Solve $y'' + (x-1)y' + y = 0$ in powers of $(x-1)$.

(b) Solve
$$y'' + (x-1)y' + y = 0$$
 in powers of $(x-1)$.

(a) Using Monge's method solve
$$x(r + 2xr + x^2t) = p + 2x^3$$
.

(b) Solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ with boundary conditions $U(x,0)=3\sin n \pi x$.

 $u(0,t)=0$, $u(\ell/t)=0$ where $0 \le x \le \ell$ and $t \ge 0$.

SECTION - II

(a) Let
$$\Lambda_{rst}^{pq}$$
 be a tensor. Show that Λ_{rsp}^{pq} is also a tensor. Find its rank.

(b) Evaluate the Christoffel symbols of:

(i) the first-kind

(ii) the second kind, for spaces where $g_{pq} = 0$ $p \neq q$.

(a) Find the real roots of the equation
$$2x - 3\sin x - 5 = 0$$
 using Newton 10 - Raphson method.

APPLIED MATHEMATICS, PAPER-II

6 (a) Find the solution of the system:

$$2x + x + 3x = 11$$

$$4x + 3x + 10x = 28$$

2x + 4x + 17x = 31 by Gauss's & elimination method.

(b) Solve the system:

$$10x + x + 2x = 44$$

$$10x + x + 2x = 4$$

$$x + 2x + 10x = 61$$

$$2x+10x+x=51$$
 by Gauss – Seidel – iterative method.

(a) Find the first and second derivatives of the function:

2

10

- 2 f(x)
- 3
- 66 127

128

- at x = 2.31 and x = 2.8.
- (b) Derive Simpson's 1/3 rule with error.

10

COMPULSORY QUESTION

8. Write only the correct choice in the Answer Book. Don't reproduce the statement.

			·	_
1		differential equation $[1 + (y'')^2]^{\frac{1}{3}} =$ ectively.	y‴ lıa	s the degree and order
	(a)	2.1	(b)	1,1
	(c)	1,3	(d)	3,1
2	The	differential equation $\frac{dy}{dx} + 2xy + xy'$	¹ == 0 i	is linear equation of:
	(a)	Cauchy	(b)	Bessel
	(c)	Bernoulli's	(d)	None of these.
3	The	differential equation $\frac{dy}{dx} = \frac{x^2 + xy + y^2}{2x^2 + y^2}$	+ 2y ² y ²	is:
4	(a)	Exact	(b)	Homogeneous
	(c)	Cauchy	(d)	None of these.
4	The	differential equation $(1-x^2)y'' - 2x$	y' + n	u(n+1)y=0
	(a)	The Guass equation	(b)	The Legendr equation
	(c)	The Ressel equation	(4)	None of these

		·	· -	SE	
PLIE	D М	IATHEMATICS, PAPER-II			CENTROLLING.CO.
5	The	differential equation $\frac{d^3y}{dx^3} + y^2 = x^4$	is:		6
	(a)	Non-homogeneous and linear	(b)	Homogeneous and non-linear	
	(c)	Non-homogeneous and non linear	(d)	None of these.	.))
•6	The	differential equation $\frac{d^2y}{dx^2} = 0$ has the	e prin	nitive:	
	(a)	$Y = Ax^3 + Bx^2 + C$	(b)	$Y = \Lambda x^2 + Bx^2 + C$	
	(c)	$Y = Ax^3 + Bx + C$	(d)	None of these.	
7	The	differential equation $(x - x^2)y'' + \int$	 γ – (α	$z + \beta + Z(xy - \alpha \beta y = 0 \text{ is:}$	
	(a)	The legendre equation	(b)	The Bessle equation	
	(c)	The Gauss equation.	(d)	None of these.	
8	The	differential equation $\frac{\partial^2 \mathbf{u}}{\partial \mathbf{t}^2} = \mathbf{c}^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2}$	is		
	(a)	One-dimensional wave equation	(b)	One dimensional heat equation	
	(c)	None of these.			
9	The		9 ² u +	$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{y}^2} = 0 \text{ is}$	
	(a)	2-dimensional poisson equation	(b)	2-dimensional Laplace equation	
	(c)	Three dimensional Laplace equation	(d)	None of these.	
10		linear partial differential equation $\frac{1}{x_x} + 2BU_{xy} + CU_{yy} = F(x, y, u, u_x)$	u _y) is	s elliptic if:	•
	(a)	AB - C 2>0	(b)	AC - B ² >0	
	(c)	AC-B ² <0	(d)	$AB - C^2 = 0$	
П	The	heat equation $u_t = c^2 u_{xx}$ is:			
	(a)	Elliptic	(b)	Parabolic	:
	(c)	Hyperbolic	(d)	None of these.	
12	The	wave equation $u_{lt} = c^2 u_{xx}$ is:	·		, : ; ;
	(a)	Ecliptic	(b)	Parabolic	
	(c)	Hyperbolic	(d)	Mixed type.	

				1.85
13	The velocity of a fluid at any point is:		·	QII.
	(a) Covariant	(b)	Contra-variant	
	(c) Mixed tensor	(d)	None of these.	
14	The inner product of tensors A_i^p and B_i^p	^{Is} is a t	ensor of rank:	
,	(a) 2	(b)	3	
	(c) 4	(d)	1	
15	Relative error is equal to:			
	(a) Approximate value	(b)	Error/true value.	
	(c) Truncation error	(d)	None of these.	
16	E is called			
	(a) Shifting	(b)	Forward difference	-
	(c) Central difference	(d)	Backward difference,	-
	operator where E $f(x) = f(x + h)$.	\mathcal{A}		
17	If $\mu f(x) = \frac{1}{2} \left[f(x + \frac{h}{2}) + f(x - \frac{h}{2}) \right]$, the	n p is	ealled:	
	(a) Mean value	(b)	Shifting	
	(c) Forward difference	/ (d)	None of these,	
	operator.			
18	$y_n + 3y_{n-1} + 2y_{n-2} = 3$ is a:			
	(a) Differential equation	(b)	Homogeneous differential equation	
	(c) Non-Homogeneous differential equation.	(d)	None of these.	:
19	In Simpson's rule, if the interval is reduced to:	iced b	y 1/3 rd then the truncation error is	
	(a) 1/3	(b)	1/9	
4	(e) 1/27	(d)	1/81	
20	Lagrange interpolating polynomial is fo	r:		
7/	(a) Equi-spaced intervals	(b)	Un-equal intervals	
	(c) Half-intervals	(d)	None of these.	