Part III - MATHEMATICS

(English Version)

Time Allowed: 3 Hours |

[Maximum Marks: 200

SECTION - A

N. B.: i) All questions are compulsory.

- ii) Each question carries one mark.
- iii) Choose the most suitable answer from the given four alternatives. $40 \times 1 = 40$

1. If
$$|\overrightarrow{a} + \overrightarrow{b}| = |\overrightarrow{a} - \overrightarrow{b}|$$
, then

- a) \overrightarrow{a} is parallel to \overrightarrow{b}
- b) \overrightarrow{a} is perpendicular to \overrightarrow{b}

c) $|\overrightarrow{a}| = |\overrightarrow{b}|$

- d) \overrightarrow{a} and \overrightarrow{b} are unit vectors.
- 2. The shortest distance of the point (2, 10, 1) from the plane

$$\overrightarrow{r}$$
. $(3\overrightarrow{i} - \overrightarrow{j} + 4\overrightarrow{k}) = 2\sqrt{26}$ is

a) $2\sqrt{26}$

b) √26

c) 2

d) $\frac{1}{\sqrt{26}}$.

[Turn over

2

Student Bounty.com 3. The point of intersection of the lines $\frac{x-6}{-6} = \frac{y+4}{4} = \frac{z-4}{-8}$ and

$$\frac{x+1}{2} = \frac{y+2}{4} = \frac{z+3}{-2}$$
 is

- (0, 0, -4)
- b) (1, 0, 0)
- c) (0, 2, 0)
- d) (1, 2, 0).

4. The projection of $3\overrightarrow{l} + \overrightarrow{j} - \overrightarrow{k}$ on $4\overrightarrow{l} - \overrightarrow{j} + 2\overrightarrow{k}$ is

a)
$$\frac{9}{\sqrt{21}}$$

b)
$$\frac{-9}{\sqrt{21}}$$

c)
$$\frac{81}{\sqrt{21}}$$

d)
$$\frac{-81}{\sqrt{21}}$$
.

The centre and radius of the sphere $|\overrightarrow{r} - (2\overrightarrow{i} - \overrightarrow{j} + 4\overrightarrow{k})| = 5$ are 5.

- (2, -1, 4) and 5 al
- (2, 1, 4) and 5 b)
- c) (-2, 1, 4) and 6
- (2, 1, -4) and 5.

The distance between the foci of the ellipse $9x^2 + 5y^2 = 180$ is

a)

c)

The directrices of the hyperbola $x^2 - 4 (y - 3)^2 = 16$ are 7.

a)
$$y = \pm \frac{8}{\sqrt{5}}$$

b)
$$x = \pm \frac{8}{\sqrt{5}}$$

c)
$$y = \pm \frac{\sqrt{5}}{8}$$

d)
$$x = \pm \frac{\sqrt{5}}{8}$$
.

8. The point of intersection of tangents at t_1 and t_2 to the parabola $y^2 = 4ax$ is

a)
$$[a(t_1 + t_2), at_1 t_2]$$

b)
$$[at_1 t_2, a(t_1 + t_2)]$$

d)
$$[at_1 t_2, a(t_1-t_2)]$$
.

The slope of the tangent to the curve $y = 3x^2 + 3 \sin x$ at x = 0 is

a) 3

c) 1

d)

10. The function $f(x) = x^2$ is decreasing in

(-∞, ∞)

(-∞, 0)

(0, ∞) c)

 $(-2, \infty).$ d)

A

[Turn over

11. The area between the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and its auxiliary circle is

a)
$$\pi b(a-b)$$

c)
$$\pi a(a-b)$$

d)
$$2\pi b(a-b)$$
.

12. The volume generated by rotating the triangle with vertices at (0, 0), (3, 0) and

13.
$$\int_{a}^{b} f(x) dx \text{ is}$$

a)
$$2\int_{0}^{a} f(x) dx$$

b)
$$\int_{a}^{b} f(a-x) dx$$

c)
$$\int_{a}^{b} f(b-x) dx$$

d)
$$\int_{a}^{b} f(a+b-x) dx.$$

14. The integrating factor of $\frac{dy}{dx} + 2\frac{y}{x} = e^{4x}$ is

a) log x b)

ex c)

d)

15. The complementary function of $(D^2 + 1)y = e^{2x}$ is

- $(Ax + B)e^x$ a)
- b) $A \cos x + B \sin x$
- c) $(Ax+B)e^{2x}$
- d) $(Ax + B) e^{-x}$.

16. If p is true and q is unknown, then

- a) ~ p is true
- b) $p \vee (\sim p)$ is false
- c) $p \wedge (\sim p)$ is true
- d) p V q is true.

17. If $f(x) = \begin{cases} kx^2 & \text{; } 0 < x < 3 \\ 0 & \text{; elsewhere.} \end{cases}$

is a probability density function, then the value of k is

a)

b) $\frac{1}{6}$

c) $\frac{1}{9}$

d) $\frac{1}{12}$.

18. Given E(x+c) = 8 and E(x-c) = 12, then the value of c is

- 2 a)

b) 4

c) - 4 d) 2.

A

[Turn over

SHIIDENT BOUNTY. COM 19. In a Poisson distribution, if P(x=2) = P(x=3) then the value of it parameter λ-is

a) 6 b)

c) 3 d)

20. Which of the following are correct?

I.
$$E(aX + b) = aE(X) + b$$

II.
$$\mu_2 = \mu_2' - (\mu_1')^2$$

III.
$$\mu_2 = Variance$$

IV.
$$Var(aX + b) = a^2 var(X)$$
.

All a)

I, II and III b)

c) II and III

d) I and IV.

21. If $A = [2 \ 0 \ 1]$, then the rank of AA^T is

a) 1 b)

3 c)

d) 0.

22. If A is a matrix of order 3, then det (kA) is

- k3 det (A)
- b) k2 det (A)
- k det (A) c)
- d) det (A).

23. If
$$A = \begin{bmatrix} 0 & 0 \\ 0 & 5 \end{bmatrix}$$
, then A^{12} is

a)
$$\begin{bmatrix} 0 & 0 \\ 0 & 60 \end{bmatrix}$$

b)
$$\begin{bmatrix} 0 & 0 \\ 0 & 5^{12} \end{bmatrix}$$

c)
$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

d)
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
.

- 24. In a homogeneous system ρ (A) < (the number of unknowns) then the system has
 - a) only trivial solution
 - b) trivial solution and infinitely many non-trivial solutions
 - c) only non-trivial solutions
 - d) no solution.
- 25. If \vec{a} and \vec{b} include an angle 120° and their magnitudes are 2 and $\sqrt{3}$, then \vec{a} . \vec{b} is equal to

a)
$$\sqrt{3}$$

b)
$$-\sqrt{3}$$

d)
$$-\frac{\sqrt{3}}{2}$$

26. If $x^2 + y^2 = 1$ then the value of $\frac{1 + x + iy}{1 + x - iy}$ is

a)
$$x - iy$$

d)
$$x + iy$$

A

[Turn over

Student Bounty Com

StudentBounts.com

a)
$$\cos \frac{\pi}{2} + i \sin \frac{\pi}{2}$$

- b) $\cos \pi + i \sin \pi$
- $\cos\frac{\pi}{2}-i\sin\frac{\pi}{2}.$

28. The value of $i + i^{22} + i^{23} + i^{24} + i^{25}$ is

'a)

b)

1 c)

29. Which of the following is incorrect regarding n^{th} roots of unity?

- The number of distinct roots is n .a)
- The roots are in G.P. with common ratio $cis\left(\frac{2\pi}{n}\right)$ b)
- The arguments are in A.P. with common difference $\frac{2\pi}{n}$ c)
- Product of the roots is 0 and the sum of the roots is \pm 1.

30. If the line 4x + 2y = c is a tangent to the parabola $y^2 = 16x$ then c is

a)

c)

31. Which of the following curves is concave down?

a)
$$y = -x^2$$

b)
$$y = x^2$$

c)
$$y = e^x$$

d)
$$y = x^2 + 2x - 3$$
.

32. One of the conditions of Rolle's theorem is

a)
$$f$$
 is defined and continuous on (a, b)

b)
$$f$$
 is differentiable on [a , b]

c)
$$f(a) = f(b)$$

d)
$$f$$
 is differentiable on $(a, b]$.

33. If
$$u = \frac{1}{\sqrt{x^2 + y^2}}$$
, then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ is equal to

a)
$$\frac{1}{2}u$$

c)
$$\frac{3}{2}u$$

d)
$$-u$$
.

34. If
$$x = r \cos \theta$$
, $y = r \sin \theta$, then $\frac{\partial r}{\partial x} =$

b)
$$\sin \theta$$

c)
$$\cos \theta$$

d) cosec
$$\theta$$
.

35. The value of
$$\int_{0}^{\pi/4} \cos^3 2x \, dx$$
 is

a)
$$\frac{2}{3}$$

b)
$$\frac{1}{3}$$

d)
$$\frac{2\pi}{3}$$
.

36. Solution of $\frac{dx}{dy} + mx = 0$, where m < 0 is

a)
$$x = ce^{my}$$

b)
$$x = ce^{-my}$$

c)
$$x = mu + c$$

d)
$$x = c$$
.

37. The order and degree of the differential equation $\frac{d^2y}{dx^2} - y + \left(\frac{dy}{dx} + \frac{d^3y}{dx^3}\right)^{3/2} = 0$

are

38. Which of the following is a tautology?

c)
$$p \lor \sim p$$

d)
$$p \wedge \sim p$$
.

39. Which of the following is not a binary operation on R?

a)
$$a * b = ab$$

b)
$$a * b = a - b$$

c)
$$a * b = \sqrt{ab}$$

d)
$$a * b = \sqrt{a^2 + b^2}$$
.

40. The value of $[3] + {11} ([5] + {11} [6])$ is

SECTION - B

- N. B.: i) Answer any ten questions.
- Student Bounty.com Question No. 55 is compulsory and choose any nine ii) questions from the remaining.
 - iii) Each question carries six marks.

 $10 \times 6 = 60$

41. Solve the following system of linear equations by determinant method.

$$2x - 3y = 7$$
, $4x - 6y = 14$.

42. If
$$A = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & -1 \\ 1 & 2 \end{bmatrix}$, verify that $(AB)^{-1} = B^{-1}A^{-1}$.

- 43. Find the equation of the sphere on the join of the points A and B having position vectors $2\overrightarrow{l} + 6\overrightarrow{l} - 7\overrightarrow{k}$ and $2\overrightarrow{l} - 4\overrightarrow{l} + 3\overrightarrow{k}$ and respectively as a diameter.
- A force of magnitude 5 units acting parallel to $2\vec{l} 2\vec{j} + \vec{k}$ displaces the 44. i) point of application from (1, 2, 3) to (5, 3, 7). Find the work done.
 - The volume of a parallelopiped whose edges are represented by $-12\overrightarrow{l} + \lambda \overrightarrow{k}$, $3\overrightarrow{l} - \overrightarrow{k}$, $2\overrightarrow{l} + \overrightarrow{l} - 15\overrightarrow{k}$ is 546. Find the value of λ .
- 45. Find the square root of -7 + 24i.
- 46. Solve the equation $x^4 4x^3 + 11x^2 14x + 10 = 0$, if one root is 1 + 2i.
- 47. Evaluate $\lim_{x \to 1} x^{\frac{1}{x-1}}$.

A

Turn over

Student Bounts, com Verify Rolle's theorem for the function $f(x) = \sin x$, $0 \le x \le \pi$. 48. i)

- Prove that e^x is strictly increasing function on R.
- 49. If $z = ye^{x^2}$, where x = 2t, y = 1 t, then find $\frac{dz}{dt}$.
- 50. Evaluate $\int \frac{\sqrt{x}}{\sqrt{x} + \sqrt{3-x}} dx.$
- 51. Solve $\frac{dy}{dx} + 2y \tan x = \sin x$.
- 52. Prove that $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$.
- 53. A game is played with a single fair die. A player wins Rs. 20 if a 2 turns up, Rs. 40 if a 4 turns up, loses Rs. 30 if a 6 turns up, while he neither wins nor loses if any other face turns up. Find the expected sum of money he can win.
- 54. Four coins are tossed simultaneously. What is the probability of getting (i) exactly 2 heads, (ii) at least 2 heads, and (iii) at most 2 heads?
 - 55. a) Let G be a group, $a, b \in G$. Then prove that $(a * b)^{-1} = b^{-1} * a^{-1}$.

b) Find the equations of the tangent and normal to the parabola

$$x^2 + 2x - 4y + 4 = 0$$
 at the point (0, 1).

www.StudentBounty.com Homework Help & Pastpapers

SECTION - C

- i) Answer any ten questions.
- Student Bounty.com Question No. 70 is compulsory and choose any ni questions from the remaining.
 - Each question carries ten marks.

 $10 \times 10 = 100$

56. Examine the consistency of the following system of equations. If it is consistent, solve them. (Use rank method)

$$x + y - z = 1$$
, $2x + 2y - 2z = 2$, $-3x - 3y + 3z = -3$.

- 57. Show that the lines $\frac{x-1}{3} = \frac{y-1}{-1} = \frac{z+1}{0}$ and $\frac{x-4}{2} = \frac{y}{0} = \frac{z+1}{3}$ intersect and hence find the point of intersection.
- 58. Find the vector and cartesian equations of the plane passing through the points with position vectors $3\overrightarrow{l} + 4\overrightarrow{j} + 2\overrightarrow{k}$, $2\overrightarrow{l} - 2\overrightarrow{j} - \overrightarrow{k}$ and $7\overrightarrow{l} + \overrightarrow{k}$.
- 59. Solve $x^7 + x^4 + x^3 + 1 = 0$.
- 60. On lighting a rocket cracker it gets projected in a parabolic path and reaches a maximum height of 4 m when it is 6 m away from the point of projection. Finally it reaches the ground 12 m away from the starting point. Find the angle of projection.
- 61. Find the eccentricity, centre, foci and vertices of the ellipse $16x^2 + 9y^2 - 32x + 36y - 92 = 0$ and draw the diagram.

A

Turn over

3521

- 62. Prove that the line 5x + 12y = 9 touches the hyperbola $x^2 9y^2 = 9$ and find its point of contact.
- 63. Find the intervals of concavity and the points of inflexion of the curve

$$y = 12x^2 - 2x^3 - x^4.$$

- 64. Trace the curve $y = x^3 + 1$.
- 65. Find the area between the curve $y = x^2 x 2$, x-axis and the lines x = -2 and x = 4.
- 66. Prove that the curved surface area of a sphere of radius r intercepted between two parallel planes at the distances a and b from the centre of the sphere is $2 \pi r (b-a)$ and hence deduce the surface area of the sphere (b>a).
- 67. Radium disappears at a rate proportional to the amount present. If 5% of the original amount disappears in 50 years, how much will remain at the end of 100 years? [Take A_0 as the initial amount]
- 68. Show that the set {[1],[3],[4],[5],[9]} forms an Abelian group under multiplication modulo 11.
- 69. Find c, μ and σ^2 of the normal distribution whose probability density function is given by $f(x) = ce^{-x^2 + 3x}$, $-\infty < x < \infty$.

70. a) Solve: $(D^2 - 1)y = \cos 2x - 2 \sin 2x$.

Student Bounty.com

OR

b) A car A is travelling from west to east at 50 km/hr and car B is travelling from south towards north at 60 km/hr. Both are headed for the intersection of the two roads. At what rate are the cars approaching each other when car A is 0.3 km and car B is 0.4 km from the intersection?