www. trenepapers.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS Pre-U Certificate

MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

9792 PHYSICS

9792/03

Paper 3 (Part B Written), maximum raw mark 140

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

		3 -	•	Pre-U – May/June 2012	9792	03	
1	(a)	cor	rect tr	ocity labelled in correct direction riangle completed nge in velocity labelled in correct direction		(1) (1) (1)	[3]
	(b)	(i)	K.E. gain K.E.	of P.E. = $560 \times 9.81 \times 25.0 = 137340 \text{J}$ at top = $\frac{1}{2} \times 560 \times 10^2 = 28000 \text{J}$ of K.E. = $137340 - 40000 = 97340 \text{J}$ at bottom = $125340 \text{J} = \frac{1}{2} \times 560 \times v^2$ $\sqrt{(2 \times 125340 / 560)} = 21.2 \text{m s}^{-1}$		(1) (1) (1) (1) (1)	[5]
		(ii)	m ×	ght of carriage = $560 \times 9.81 = 5494 \text{N}$ (force 1 or 2) $a = m \times (v^2/r) = 560 \times 21.16^2 / 18.0 = 13930 \text{N}$ pward force from track = 19420N (force 2 or 1)		(1) (1) (1)	[3]
	((iii)	diag	ram showing two forces with upward force larger than	force down	(1)	[1]
	((iv)		ard force is an (electrical) contact force (allow reaction nward force is a gravitational force)	(1) (1)	[2]
						[Total:	: 14]
2	(a)	(i)	an o	oscillation in which frictional forces are zero (negligible)		(1)	[1]
		(ii)	an o	cillation where the amplitude is decreasing OR escillation where frictional forces exist OR re the energy of the oscillation is decreasing		(1)	[1]
	((iii)		escillation where the amplitude is maintained by energy external source	being supplied by	(1)	[1]
	(b)	(i)		at the resonant frequency $\omega = 2\pi f = 2\pi \times 35.5 = 223$ rause of $A = 0.0114$ in equation $E = \frac{1}{2}mA^2\omega^2$ = $\frac{1}{2} \times 0.046 \times 0.0114^2 \times 223^2 = 0.149$ J	$d s^{-1}$	(1) (1) (1)	[3]
				amplitude read correctly as 0.0041m giving energy as $\frac{1}{2} \times 0.046 \times 0.0041^2 \times (40\pi)^2 = 0.006$	1 J	(1) (1)	[2]
		(ii)		e starting point and lower graph peak imum amplitude at lower frequency within original shap	oe	(1) (1)	[2]
						[Total:	: 10]
3	(i)	min	imum	n work required = mgh = 50 × 9.81 × 400 = 196 000 J		(1)	[1]
	(ii)			onal potential = gh = 9.81 × (600 – 200) = 3920 R N m kg ⁻¹ OR J kg ⁻¹		(1) (1)	[2]
	(iii)			to make lines cross contour lines at right angles [1] for every two glaring discrepancies of this (to minim	um zero)	(2)	[2]
	(iv)	the	gravi	itational field is vertically downward / into page		(1)	[1]

Syllabus

Paper

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U – May/June 2012	9792	03

(b) (i) attempt to make lines cross equipotentials at right angles arrows in the correct direction

(1) (1) [2]

(ii) 1. work done = QV= $50 \times 10^{-6} \text{ C} \times 400 \text{ V} = 0.020 \text{ J}$ (1) (1)

2. work done = 50×10^{-6} C × -400 V = -0.020 J

(1) [3]

[Total: 11]

4 (a) (i) 1. work done =
$$p\Delta V = 5.7 \times 10^6 \text{ Pa x} (3.1 - 2.0) \times 10^{-5} \text{ m}^3$$
 (1)
= 62.7 J

2. zero (1) [3]

$$(ii) \quad \frac{P_{\rm B}V_{\rm A}}{T_{\rm A}} = \frac{P_{\rm B}V_{\rm B}}{T_{\rm B}} \tag{1}$$

$$T_{\rm B} = \frac{P_{\rm B}V_{\rm B}T_{\rm A}}{P_{\rm A}V_{\rm A}} = \frac{5.7 \times 10^6 \times 2.0 \times 10^{-5} \times 300}{1.0 \times 10^5 \times 36 \times 10^{-5}} \tag{1}$$

$$T_{\rm B} = 950 \,\rm K$$
 (1) [3]

(b)

section of cycle	heat supplied	work done	increase in the
	to the gas / J	on the gas / J	internal energy of the system / J
$A \rightarrow B$	0	235	235 A
$B \rightarrow C$	246	– 63 C	183 B (sum of 246 and –63)
$C \rightarrow D$	0	- 333	– 333 D
$D \rightarrow A$	−85 E	0 C	235 + 183 –333 = – 85 E

(5) [5]

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U – May/June 2012	9792	03

(c) (i) efficiency =
$$\frac{396 - 235}{246}$$
 (1) [1]

= 0.65 or 65%

OR $1 - T_1/T_2 = 1 - 300 / 950 = 0.68$ or 68%

(ii) two reasons e.g.

the graph is idealised so will (curl at the corners) not be the exact shape
(1)
friction will reduce forces
(1)
the gas is not an ideal gas
(1)
[2]

[Total: 14]

5 (a)
$$^{210}_{84}\text{Po} \rightarrow {}^{4}_{2}\alpha + {}^{206}_{82}\text{Pb}$$
 [2]

(ii) ratio =
$$m_{Pb}/m_{\alpha}$$
 (1)
= 206/4 = 51.5 (1) [2]

(iii) ratio =
$$(m_{\alpha}/m_{Pb}) \times (v_{\alpha}/v_{Pb})^2$$
 (1)
= 51.5 (1) [2]

(c)
$$N = N_0 e^{-\lambda t}$$

 $\ln (N/N_0) = -\lambda t$ (1)
 $\ln (850/24000) = -3.3406 = -(\ln 2/138) \times t$ (1)
 $t = 138 \times 3.3406 / \ln 2 = 665 \text{ days} (= 5.75 \times 10^7 \text{ s})$ (1) [3]

[Total: 10]

		Pre-U – May/June 2012	9792	03	
6	(a) (i)	values $n = 1$ $E_1 = -13.6 \text{ (eV)}$ $n = 2$ $E_2 = -3.40 \text{ (eV)}$ $n = 3$ $E_3 = -1.51 \text{ (eV)}$ $n = 4$ $E_4 = -0.85 \text{ (eV)}$ $n = 5$ $E_5 = -0.54 \text{ (eV)}$ - 1 for each end	ror	(2)	
	(ii)	lines shown not to scale but sensibly positioned		(1)	[3]
	(b) all	shown		(1)	[1]
	(c) (i)	photon energy = $-0.54 - (-3.40) = 2.86 \text{eV}$		(1)	[1]
	(ii)	photon energy = $2.86 \text{ eV} \times 1.6 \times 10^{-19} \text{ J eV}^{-1} = 4.58 \times 10^{-19} \text{ wavelength} = hc/E$ = $6.63 \times 10^{-34} \times 3.0 \times 10^{8} / 4.58 \times 10^{-19} = 4.34 \times 10^{-7} \text{ m}$	¹⁹ J	(1) (1) (1)	[3]
	(d) infr	a-red transition – any excluding falls to levels 1 or 2		(1)	[1]
	(e) ultr	a-violet		(1)	[1]
				[Total	: 10]
7	(a) (i)	$\sin 0.0000255 = 1.50 \times 10^{11} / x$ $x = 1.50 \times 10^{11} / \sin 0.0000255 = 3.37 \times 10^{17} \text{ m}$ (or tan)		(1) (1)	[2]
	(ii)	luminosity = luminous flux × area = $3.6 \times 10^{-9} \times 4\pi r^2$ = $3.6 \times 10^{-9} \times 4\pi (3.37 \times 10^{17})^2 = 5.14 \times 10^{27}$ W(att) or J s ⁻¹		(1) (1) (1)	[3]
	(iii)	luminous flux $\propto 1/d^2$ $3.6 \times 10^{-9} \times (3.37 \times 10^{17})^2 = 8.3 \times 10^{-11} \times y^2$ $y = \sqrt{(360 / 8.3)} \times 3.37 \times 10^{17} = 2.22 \times 10^{18} \text{ m}$		(1) (1) (1)	[3]
	λ _{ma} 540	$_{\rm ax} \propto 1/T$ $_{\rm x}$ for Sun = 540 nm, $\lambda_{\rm max}$ for Y = 800 nm, 0 × 5800 = 800 × $T_{\rm y}$ = 540 × 5800 / 800 = 3900 (± 200) K		(1) (1) (1)	[3]

Syllabus

Paper

[Total: 11]

	Pre-U – May/	June 2012	9792	03	
(a) resis	stivity = (resistance × cross sectio	n area) / length		(2)	[2]
(b) A = R =		bstitution for area ncel <i>1</i> from equation		(1) (1)	[2]
(c) (i)	$1/1600 = 1/1650 + 1/R_L$ co	call formula – realise layer rrect substitution swer 53 000 (Ω)	s are in parallel	(1) (1) (1)	[3]
	$52800 = (\rho \times 0.9)/(0.4 \times 0.05)$ su ρ = 1170 (Ω m) co	bstitution – ignore powers rrect value for $ ho$	of ten errors	(1) (1)	[2]
(d) (i)		e formula		(1)	
	= (-) $(84 \times 10^{-3} \times 1)/60$ = 1.4×10^{-3} an units: Wb s ⁻¹ or V un	swer it		(1) (1)	[3]
` '	induced emf is directly proportional to the rate of change in flux (linkage	3)		(1) (1) (1)	[3]
(iii)	any two consistent points from:Lenz's law a consequence of	f law of conservation of en	ergy	(1)	
	 magnetic field created by ind permanent magnetic field 			(1)	
	work has to be done to move it is repelled this energy is converted to all			(1)	
	 this energy is converted to el complete circuit 	lectrical effetgy dissipated	III tile coli s	(1)	[2]
	omplete oscillations drawn			(1)	
	od kept constant sonably symmetrical and steady d	ecrease in amplitude		(1) (1)	[3]

Syllabus

Paper

[Total: 20]

Page 6

8

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U – May/June 2012	9792	03

9 (a) the acceleration (or force) is directly proportional to the displacement (from

the equilibrium point)

(1)

and is always directed towards that point

(1)

OR

accept formula $a = -\omega^2 x$ with explanation of each symbol and significance of minus sign

(2) [2]

(b)
$$d^2x/dt^2 = -\omega^2x$$

(1) [1]

(c)

	В	С	D	E	F
displacement	+	0	ı	0	+
velocity	0	-	0	+	0
acceleration	_	0	+	0	_

displacement line symmetrical about D (+0–0+ or –0+0–)

(1)

displacement line correct

(1)

acceleration line opposite to displacement line.

(1)

velocity line has B D & F as zero with answers to C and E consistent with their displacement line.

(1) [4]

- (d) (i) phase difference between displacement and velocity is $\pi/2$ OR $3\pi/2$ radians OR 90°
 - (ii) displacement and acceleration are exactly out of phase OR out of phase by π radians OR 180°

(1) [2]

(e) (i) 1. amplitude = 8 cm, T = 2.0 s so f = 0.5 (Hz)

(1) [1]

(ii) 1. $F = mA\omega^2$

=
$$0.02 \times 0.08 \times (2\pi/2)^2$$
 convert to kg and m and substitute
= 0.0158 (N) answer 0.016 (N)

(1) (1) [2]

2. negative cos graph of any amplitude

(1)

for at least 3.5 s

(1) [2]

	Page 8			Mark	Scheme: Teach Pre-U – May/Jur		Syllabus 9792	Paper 03	•
	(f)	(i)			<i>n</i> or equivalent in	tegral expression labelling on diagram	0102	(1) (1)	[2]
		(ii)	0.20 2.07	$I \sin \theta = \frac{1}{2} I a$ $I \cos \theta = \frac{1}{2} I a$		10 ⁻⁴ ω^2) + (½ 0.20 × 3	.72²)		
		•			d or used i.e. RKI	$E = \frac{1}{2} I \omega^2$ bols or used or stated	in words	(1)	
		•	i.e.		$1\frac{1}{2}$ mv ² or mg × I	$\sin\theta = \frac{1}{2}I\omega^2 + \frac{1}{2}mv^2$		(1) (1)	
		•		ver $\omega = 371$ (r				(1)	
			alter	native method I = ½mr²	and correct answ	ver for candidates who	work out or know	(4)	[4]
								[Total:	20]
10	(a)	(i)	sam	e mass				(1)	
		(ii)	oppo	osite charge or	opposite spin			(1)	[2]
	(b)	(i)	$\Delta E = c^2 m$ = $(3.00 \times 10^8)^2 \times 2 \times 9.11 \times 10^{-31}$	correct substitution	1	(1)			
			= 1.6	$64 \times 10^{-13} (J)$	~ 9.11 ~ 10	ans: 1.6 × 10 ⁻¹³ (J)		(1)	[2]
		(ii)		½ ΔE)/h × 1.64 × 10 ⁻¹	³)/6.63 × 10 ⁻³⁴	halve energy in (b)	(i)	(1)	
			= 1.2	24 × 10 ²⁰ (Hz)	<i>,,</i> e.c.	ans: 1.2 × 10 ²⁰ (Hz	r)	(1)	[2]
	(c)	(i)	ener	•••	energies s constant / energ icle has the remai			(1) (1) (1)	
		(ii)	78 =	79 + -1 henc	e antineutrino mu	ıst have zero proton nı	umber	(1)	[4]
	(d)	ln 2	accept either $C = C_0 e^{-\mu x}$ or $I = I_0 e^{-\mu x}$ $C = 8\mu$ 0.0866 mm ⁻¹ OR 86.6 m ⁻¹						
		μ = 0.0806 mm. OR 86.6 m. C_0 = 800 (s ⁻¹) consistent values for x and C from graph μ = 0.087 OR 87 unit: m ⁻¹					(1) (1) (1) (1)	[3] [1]	

Page 9			Mark Scheme: Teachers' version Pre-U – May/June 2012	Syllabus 9792	Paper 03		
				Fie-0 – Way/Julie 2012	3132	03	
	(e)	(i)	$\lambda = I$	h/mv giving expression for angular momentum, mvr =	$nh/2\pi$	(1)	[1]
		(ii)	angu	ular momentum = $(4 \times 6.63 \times 10^{-34})/2 \times 3.142$ = 4.22×10^{-34} (Js)		(1)	
				s must be same as those for h i.e. Js ept kg m ² s ⁻¹		(1)	[2]
		(iii)		${9.11 \times 10^{-31} \times (1.6 \times 10^{-19})^4}/{8 \times (8.85 \times 10^{-12} \times 6.68 \times 10^{-19})^4}$	$3 \times 10^{-34})^2$		
		correct values for symbols used correct substitution answer 2.2 × 10 ⁻¹⁸ (J)		(1) (1) (1)			
				e is no credit for quoting 13.6 eV from memory or for si value to joules	mply converting		[3]
					I	Total:	20]
11	(a)	the	laws	of physics are the same for all inertial (uniformly moving	ng) observers	(1)	[1]
	(b)	the	spee	d of light is a constant for all inertial (uniformly moving) observers	(1)	[1]
	(c)	(i)	gam OR	ma-rays are part of the electromagnetic spectrum			
				M waves travel at the speed of light		(1)	[1]
		(ii)	•	ons have momentum nentum would not be conserved		(1) (1)	[2]
	(d)	(i)	the s	speed of light in the laboratory is independent of the sp	eed of the source	(1)	[1]
		(ii)	c (or	$3.0 \times 10^8 \text{ ms}^{-1}$) accept 'the speed of light'.		(1)	[1]
		(iii)	clock corre	clock moves relative to an observer then its rate is slow k at rest relative to the same observer (look for clarity ect explanation) : partial answer scores one mark, e.g. time passes rently moving observers OR moving clocks run at diffe	y of explanation and at different rates for	(2)	[2]
		(iv)	γ = -	$\frac{1}{\sqrt{1-0.20^2}} = 1.021$		(1)	
				life in laboratory reference frame = 1.021 × 18 ns = 18.	4 ns	(1)	[2]

Page 10	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U – May/June 2012	9792	03

(e) (i)
$$\frac{t'}{t} = 1 + \frac{300^2}{2(3.0 \times 10^8)^2} = 1 + 5 \times 10^{-13}$$

or 1.000000000005

award 1 mark for correct substitution rounded to 1 (no more than 12 zeros after dec. pt.)

(2)[2]

 $\Delta t = 5 \times 10^{-13} \times 50 \times 3600 \,\mathrm{s} = 90 \,\mathrm{ns}$

(1)

2. decreases the time (1) [2]

(iii) any three points from:

calculation that a drift of 5 ns per hour is 250 ns total in 50 hours (i.e. greater than expected time difference) (1) calculation that 100 ns gain/loss per day is about 200 ns in 50 hours (again greater than expected time difference) (1) such large variations in clock rates must cast doubt on the conclusion (1) if changes in rate can be monitored they can be corrected for and so the results might be valid (1)(1)

- if changes in rate occur unpredictably and have this magnitude then the conclusion is invalid allow other valid points
- (f) red shift is increased/ greater (than expected from simple Doppler shift formula) time dilation reduces the frequency of the light source relative to terrestrial source (1) [2]

[Total: 20]

[3]

12 (a) valid choice of experimental evidence e.g. electron diffraction experiments (Thompson or Davis and Germer) / electron diffraction rings (1) [1]

(b) (i) increased energy results in shorter wavelength/ higher frequency (1)spacing is reduced (1) [2]

(1)

(ii) calculate resultant amplitude by superposition probability is proportional to amplitude squared

[2] (1)

(iii) three points from:

electrons can reach the minimum by two (or more) paths (1) all paths contribute to the resultant amplitude (1)the path differences result in phase differences (1)the resultant amplitude is zero (1) the probability of arrival is proportional to amplitude-squared so is also zero (1) [3]

N.B. 3 marks can only be awarded if the answer explains why no electrons arrive at the minimum

Page 11		je 11		Syllabus	Paper	
			Pre-U – May/June 2012	9792	03	
	(c)	(i)	t = 10 ms approx. 10 dots distributed at random – no discernible/reg	ular pattern	(1)	
			t = 50 ms larger number of dots – pattern emerging		(1)	
			t = 5s similar shading to pattern at 2 hours		(1)	[3]
		(ii)	interference effects occur even with single electrons OI with themselves	R electrons interfe	ere (1)	
			interference effects are not caused by the interaction of dif	fferent electrons	(1)	[2]
	(d)	(i)	wavefunction collapses		(1)	
	more detail must be given for 2 marks: e.g. before observation there are non-zero values spread across the after observation the amplitude is zero everywhere except at the observation					
			OR before observation the wavefunction is a spreobservation it is a spike o.w.t.t.e.	eading wave, af	ter (2)	[2]
		(ii)	any one point from: the theory cannot explain how the wavefunction collapses the physical description is discontinuous		(1) (1)	
			quantum theory can only account for the behaviour wavefunction	of the unobserve		[1]
	(iii)	four points from: description of 'Many-Worlds Interpretation' the wavefunction represents a superposition paths/outcomes each alternative path/outcome exists in a different worl the world 'splits' into many worlds each represexperimental outcome avoidance of 'the Measurement problem' the wavefunction does not collapse so the problem go in each world an observer detects an electron at a difference.	rld esenting a differe es away	(1) (1) ent (1) (1)	[4]
					[Total:	20]
13	(a)	com tem expa	= Q + W used correctly (at least U and W identified) npression: work is done on the gas so its internal e nperature goes up nansion: work is done by the gas so its internal energy falls es down		(1)	[4]
	(b)		ange of state – liquid to gas) <u>bonds broken /latent heat abs</u> <u>k done by gas</u> as it expands (increase in volume)	sorbed	(1) (1)	[2]

Page 12	Mark Scheme: Teachers' version	Syllabus	Paper
	Pre-U – May/June 2012	9792	03

(c)	heat flows from hot to cold $\underline{\text{and}}$ pipes are at a lower temperature than the inside of the refrigerator	(1)	[1]
(d)	a measure of the number of ways in which the energy can be distributed amongst the particles of the body	(1) (1)	[2]
(e)	if <u>more energy is supplied</u> there will be <u>more ways in which it can be distributed</u> amongst the particles of the body (so the entropy increases) OR	(1)(1)	
	$\Delta S = \Delta Q/T$ used appropriately with terms defined	(2)	[2]
(f)	zero	(1)	[1]
(g)	(i) decrease		
	(ii) increase must have both (i) and (ii) correct for 1 mark	(1)	[1]
(h)	that it never decreases OR	(1)	
	that it tends to a maximum	(1)	[1]
(i)	three points from: electrical work W from supply is ultimately dumped as heat in the environment when heat is dumped in the environment it increases entropy this adds to the heat Q_1 extracted from the inside of the refrigerator total heat dumped increases entropy more than heat Q_2 absorbed reduces it note: accept answers that refer to the entropy change of the refrigerator and environment in terms of $\Delta S_{\text{OUT}} = W + Q_2/T_{\text{OUT}} > \Delta S_{\text{IN}} = -Q_1/T_{\text{IN}}$ for 3 marks as long as terms are used correctly	(1) (1) (1) (2)	[3]
(j)	temperature of the room will increase two points from: heat dumped > heat extracted energy flows into the system electrical energy input transferred to heat in room	(1) (1) (1) (1)	[3]

[Total: 20]