CAMBRIDGE INTERNATIONAL EXAMINATIONS

Pre-U Certificate

hun, trenepapers, com

MARK SCHEME for the May/June 2014 series

9794 MATHEMATICS

9794/02

Paper 2 (Pure Mathematics 2), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, Pre-U, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Pre-U – May/June 2014	9794	02

1	(i)	$BC^2 = 10^2 + 7^2 - 2 \times 10 \times 7 \times \cos(100)$ BC = 13.164 = 13.2 to 3 sf	M1 A1	[2]	Must be correct formula attempted
	(ii)	Area = $0.5 \times 10 \times 7 \times \sin(100)$	M1		Must be correct formula attempted Allow equiv methods as long as valid use of trig throughout
		= 34.468 = 34.5 to 3 sf	A1	[2]	use of this throughout
2	(i)	$\Delta = b^2 - 4ac$ $= k^2 - 16$	M1 A1	[2]	Simplify to this
	(ii)	$k^2 - 16.0$ $k.4$ $k, -4$	M1 A1 A1	[3]	Must be > seen, or implied by answer Allow incorrect answer from (i), as long as $b^2 - 4ac$ attempted A1A0 for $-4 > k > 4$ or $k > \pm 4$ Allow BOD on 'and' not 'or' $ k > 4$ gets A1A1
					Attempting to solve $f'(x) > 0$ can get M1A1A1 as above
3		$(x + h)^3 = x^3 + 3x^2h + 3xh^2 + h^3$ seen anywhere	B1		Or unsimplified equiv Could expand $(x - h)^3$ instead
		If $f(x) = x^3$, $f(x+h) = (x+h)^3$	M1		Just recognise that $f(x + h) = (x + h)^3$, or $f(x - h) = (x - h)^3$
		$\frac{f(x+h) - f(x)}{h} = \frac{(x+h)^3 - x^3}{h}$ $= 3x^2 + 3xh + h^2$	M1		Attempt correct process, including division by h
		then $f'(x) = \lim_{h \to 0} (3x^2 + 3xh + h^2) = 3x^2$	A1	[4]	Allow $h = 0$ for $h \to 0$ Allow $f'(x) \to 3x^2$ Need to see $f'(x)$ or $\frac{dy}{dx}$ within proof
					$\frac{1}{dx}$ within proof

Page 3	Mark Scheme	Syllabus	Paper
	Pre-U – May/June 2014	9794	02

4	(i)	$\overrightarrow{AB} = \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix} \overrightarrow{CB} = \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix}$	B1		Any two relevant vectors Allow vectors of inconsistent directions e.g. AB and BC
		$(\pm)9 = \sqrt{35}\sqrt{5}\cos A\hat{B}C$	M1		Attempt scalar product – allow
		$\cos A\hat{B}C = \frac{9}{\sqrt{35}\sqrt{5}}$	A1		inconsistent directions Correct expression involving cos ABC – not necessarily with cos ABC as the
		so $\hat{ABC} = 47.13 = 47.1^{\circ}$ to 1 dp	A1	[4]	subject CWO
			B1 M1 A1		Using cosine rule Three correct vectors soi Attempt correct cosine rule Correct expression involving cos ABC CWO so A0 if correct surd from incorrect vector Obtain 47.1°
	(ii)	$k\overrightarrow{AB} = k \begin{pmatrix} 1\\3\\5 \end{pmatrix} = \overrightarrow{CD} = \begin{pmatrix} -5\\a-2\\b-3 \end{pmatrix}$ $3 \times -5 = a - 2 \text{ so } a = -13$	M1		Attempt to find at least one of a and b , by considering at least two components of parallel vectors, including attempt at k
		$5 \times -5 = b - 3$ so $b = -22$	A1	[3]	
5	(i)	68	B1	[1]	
	(ii)	$S_{15} = 7.5 \times (2 \times 5 + 14 \times 7)$ = 810	M1 A1	[2]	Attempting to use correct formula
	(iii)	New series with $a = 11$ and $d = 14$	M1		Either identified explicitly, used in formula or just listing new terms
		$S_{15} = 7.5 \times (2 \times 11 + 14 \times 14)$ = 1635	M1 A1	[3]	(could be a & l)
		OR	OR		
		$\sum_{1}^{15} 2x_n + 1 = 2\sum_{1}^{15} x_n + 15$	M1		Allow M1M0 for $\left(2\sum_{1}^{15}x_{n}\right)+1$
		$= 2 \times 810 + 15$ = 1635	M1 A1		

Page 4	Mark Scheme	Syllabus	Paper
	Pre-U – May/June 2014	9794	02

	T		
6	$\sin\theta = \frac{\sqrt{7}}{4}$	M1	Attempt to find numerical value of $\sin \theta$ – from right angled triangle or identities
	$\sin 2\theta = 2\sin \theta \cos \theta$	M1	Must be correct triangle/identity Use $\sin 2\theta = 2 \sin \theta \cos \theta$ with numerical values M0 if using numerical value for θ not
	$=2\times\frac{\sqrt{7}}{4}\times\frac{3}{4}=\frac{3\sqrt{7}}{8}$	A1	$\sin \theta$ M0M1 is possible (e.g. assuming 3, 4, 5 Δ) Obtain correct surd aef (must be single fraction)
	$\cot \theta = \frac{\cos \theta}{\sin \theta} = \frac{\frac{3}{4}}{\sqrt{7}} = \frac{3}{\sqrt{7}}$	M1	Attempt to find $\cot \theta$, using numerical values M0 if using numerical value for θ not $\tan \theta$
		A1 [Could follow first M0 Obtain correct surd aef (must be single fraction)
7 (i)	$(z^2+4)(z^2-1)$	B2 [Stating $a = 4$, $b = -1$ (or reverse) gets B2 Allow B1 for $(z^2 - 4)(z^2 + 1)$ Allow B1 (BOD) for $(z + 4)(z - 1)$
(ii)		√B1	At least 2 correct points, following their <i>a</i> & <i>b</i>
	2i 1 1 -2i •	√B1 [All 4 correct points, following their <i>a</i> & <i>b</i> as long as one positive and one negative NIS so B1B0 if locus drawn through points
			Allow just 2 on axis as long as 2 <i>i</i> seen in solution, or axis is labelled as Im

Page 5	Mark Scheme	Syllabus	Paper
	Pre-U – May/June 2014	9794	02

8	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x - \frac{1}{x}$	M1 A1	Attempt integration – one correct term Fully correct
	solve to obtain $x = (\pm)\frac{1}{\sqrt{2}}$ only one stationary point at $\left(\frac{1}{\sqrt{2}}, \frac{1}{2} - \ln \frac{1}{\sqrt{2}}\right)$ AEF as x , 0 cannot be valid due to \ln	M1 A1 A1	Equate to 0 and attempt to solve Obtain at least the positive root Obtain correct stationary point having selected the positive root only from $\pm \frac{1}{\sqrt{2}} \text{ Allow } x =, y =$ Exact final answer only, else A0 Explanation of why there is only one root, referring to $\ln x$ Only considering +ve solution will get $\max 4/6$
9 (i) (ii)	Model 1: Attempt iteration $P_3 = 687$ Model 2: Attempt iteration $P_3 = 927$ Model 1 converges to 693	M1 A1 M1 A1 B1 [2]	At least twice Allow decimal values, or 686 At least twice Allow decimal values, or 926 Identify Model 1, with minimal explanation e.g. decreasing rate of increase Identify that it converges to 693 oe (could justify that $P_t \approx P_{t-1}$)
(iii)	appears to settle down to periodic (values 926, 561, 980 and 429)	B1 [1]	State as periodic oe – need to see 4 values, or refer to period of 4 years

Page 6	Mark Scheme	Syllabus	Paper
	Pre-U – May/June 2014	9794	02

10	(i)	f(1) = 1 - 4 - 10 + 28 - 15 = 0 hence $x = 1$ is a root	M1 A1	[2]	Substitute $x = 1$ into the function, or equivalent process to find remainder Show clearly that it equals zero and conclude, with correct terminology
	(ii)	$f(x) = (x - 5)(x^3 + x^2 - 5x + 3) + 0$	M1		Attempt complete division or factorisation
			A1		Quotient correct at least as far as x^2 term
			A1		Quotient $x^3 + x^2 - 5x + 3$ soi
			B1	[4]	Remainder 0 (allow 'no remainder') soi
	(iii)	$f(x) = (x - 5)(x - 1) (x^2 + 2x - 3)$	M1		Attempt to write $f(x)$ as product of two linear factors and one quadratic Could go via $(x-1)(x^3-3x^2-13x+15)$
			A1		Obtain correct linear and quadratic
		$= (x-5)(x-1)^2 (x+3)$	A1		factors soi Obtain fully correct factorisation
		Sketch showing: a positive quartic Intersecting with the <i>x</i> -axis at –3 and 5	M1		Positive quartic, with 3 turning points Allow $y \le 0$ only
		and maximum on the x -axis at 1	A1	[5]	Allow $y \le 0$ only x coords indicated, or implied by scale No need to see -15 on y -axis Allow minimum at $(0, -15)$ Need $y > 0$ as well, possibly with one arm truncated

Page 7	Mark Scheme	Syllabus	Paper
	Pre-U – May/June 2014	9794	02

11	(i)	$F_1'(x) = x - \frac{3}{4}x^2$	B1		
		$F_{2}'(x) = \frac{1}{3} \left(2x^{2} - 4x + 7 \right)^{-\frac{2}{3}} \left(4x - 4 \right)$	M1 A1		Attempt chain rule Must include any necessary brackets
		$F_{3}'(x) = \frac{-4(x^2 - 2x) - (7 - 4x)(2x - 2)}{(x^2 - 2x)^2}$	M1		Attempt quotient rule (allow sign muddles in numerator) Could also differentiate partial fractions
			A1	[5]	No need to simplify (isw if done incorrectly)
	(ii)	$F_{1}'(1.9) = -0.8075$ $F_{2}'(1.9) = 0.340$	M1		Attempt $F'(1.9)$ for all three functions
		$F_{3}'(1.9) = 50.9$	B1*		State correct condition for convergence – could be for acceptance or rejection, but must have modulus sign oe
		F_1 and F_2 converge	A1d*		Identify F_1 and F_2 Need $F'(1.9)$ correct for all 3 functions
		Faster convergence is F_2 because the magnitude of the gradient is smallest near the root. WWW	A1	[4]	Must have magnitude soi, not just 'gradient smaller' Accept gradient closer to 0 Need F'(1.9) correct for all 3 functions M1B0A0A1 is possible
	(iii)	$ e_{r+1} = 0.34^r e_1 $	M1		Attempt to apply general statement to this question e.g. $e_2 = 0.34 \times e_1$
		$10^{-10} e_1 > 0.34^r e_1 $	M1		Attempt to solve $10^{-10} e_1 = \text{F}^*(1.9)^r e_1 $
		so $r > \frac{-10}{\log 0.34} > 21.34$, so 22 iterations.			Allow index of r or $r-1$ Could use a more accurate value for α Allow any numerical value for e_1 , inc 1.9 Allow any F (1.9) as long as
			A1	[3]	F'(1.9) < 1 Obtain 21 / 22 / 23 depending on index and method used If numerical e_1 used, it must have been correct No credit for answer only

Page 8	Mark Scheme	Syllabus	Paper
	Pre-U – May/June 2014	9794	02

12	(i)	$\cos t = 0 \text{ or } \sin t = \frac{1}{2}$	M1		Attempt to solve at least one of these
		$\cos t = 0 \implies t = \frac{1}{2}\pi, \frac{3}{2}\pi$	A1		Obtain both values for t
		y = -2 and -4 respectively	A1		Obtain both values for y
		$\sin t = \frac{1}{2} \Rightarrow t = \frac{1}{6}\pi, \frac{5}{6}\pi$	A1		SR A1 for one correct <i>t</i> , <i>y</i> pair Obtain both values for <i>t</i>
		$y = -\frac{1}{4}$ for both values of t so	A1	[5]	Obtain $y = \frac{-1}{4}$ for both, and comment
		there is only one point on the y-axis associated			that same point – allow just listing
		with both.			$(0, \frac{-1}{4})$ once
					SR A1 for one correct t, y pair
					max of 4/5 if working in degrees
	(ii)	$\sin t < 0$ AND $\sin t > \frac{1}{3}$, but this is not possible	B1		
		Identify that $\sin t > 0$ AND $\sin t < \frac{1}{3}$	M1		If equating to 0 and solving then both inequalities must be used/implied later to get M1 Allow \geq for $>$
		so $t \in \left(0, \sin^{-1}\frac{1}{3}\right) \cup \left(\pi - \sin^{-1}\frac{1}{3}, \pi\right)$ oe	A1		Obtain at least $0 < t < \sin^{-1}(\frac{1}{3})$
					Allow $0 < t < 0.34$ Allow \geq for $>$
			A1	[4]	Allow $0 < t < 0.34, 2.80 < t < 3.14$
					working in degrees can get M1A1 only