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1 The first term of a geometric progression is 16 and the common ratio is 0.8.

(i) Calculate the sum of the first 12 terms. [3]

(ii) Find the sum to infinity. [2]

2 Let f(x) = x3 − 3x2 − 13x + 15.

(i) Show that f(1) = 0 and hence factorise x3 − 3x2 − 13x + 15 completely. [4]

(ii) Hence solve the equation x3 − 3x2 − 13x + 15 = 0. [2]

3 The equation of a curve is y = x3 + x2 − x + 3.

(i) Find
dy

dx
. [2]

(ii) Hence find the coordinates of the stationary points on the curve. [4]

4 (i) Show that the equation x3 − 6x + 2 = 0 has a root between x = 0 and x = 1. [2]

(ii) Use the iterative formula x
n+1

= 2 + x3
n

6
with x

0
= 0.5 to find this root correct to 4 decimal places,

showing the result of each iteration. [3]

5 Let f(x) = x2 and g(x) = 7x − 2 for all real values of x.

(i) Give a reason why f has no inverse function. [1]

(ii) Write down an expression for gf(x). [2]

(iii) Find g−1(x). [2]

6 The roots of the equation ß2 − 6ß + 10 = 0 are ß
1

and ß
2
, where ß

1
= 3 + i.

(i) Write down the value of ß
2
. [1]

(ii) Show ß
1

and ß
2

on an Argand diagram. [2]

(iii) Show that ß2
1
= 8 + 6i. [2]

7 (i) Show that the first three terms in the expansion of (1 − 2x)1
2 are 1 − x − 1

2
x2 and find the next term.

[4]

(ii) State the range of values of x for which this expansion is valid. [1]

(iii) Hence show that the first four terms in the expansion of (2 + x)(1 − 2x)1
2 are 2 − x + ax2 + bx3 and

state the values of a and b. [4]
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8 (i) Given that
2x + 11(2x + 1)(x + 3) ≡ A

2x + 1
+ B

x + 3
, find the values of the constants A and B. [4]

(ii) Hence show that ä
2

0

2x + 11(2x + 1)(x + 3) dx = ln 15. [5]

9 Three points A, B and C have coordinates (1, 0, 7), (13, 9, 1) and (2, −1, −7) respectively.

(i) Use a scalar product to find angle ACB. [5]

(ii) Hence find the area of triangle ACB. [2]

(iii) Show that a vector equation of the line AB is given by r = i + 7k + λ (4i + 3j − 2k), where λ is a

scalar parameter. [3]

10 (i) Prove that

sin2 2θ(cot2
θ − tan2

θ) = 4(cos4
θ − sin4

θ)
and hence show that

sin2 2θ(cot2
θ − tan2

θ) = 4 cos 2θ. [5]
(ii) Hence solve the equation sin2 2θ(cot2

θ − tan2
θ) = 2 for 0◦ ≤ θ < 360◦. [4]

11 (i) Use integration by parts to show that ã ln x dx = x ln x − x + c. [2]

(ii) Find

(a) ã (ln x)2 dx, [4]

(b) ä ln(ln x)
x

dx. [5]
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