COST ACCOUNTING AND QUANTITATIVE ANALYSIS

Foundation stage December 2001

MARKING SCHEME

(a) Overhead Analysis Sheet

	Machining	Assembly	Maintenance	Stores	Total
	£	£	£	£	£
Indirect materials	100,000	100,000	45,000	9,000	254,000
Indirect wages	100,000	98,500	92,500	46,000	337,000
Managers salaries (employees)	30,000	30,000	10,000	10,000	80,000
Depreciation of machines (value)	120,000	30,000	-	-	150,000
Heating & lighting (area)	10,000	15,000	10,000	15,000	50,000
Building insurance (area)	5,000	7,500	5,000	7,500	25,000
Insurance of machines (value)	12,000	3,000	-	-	15,000
Rent and rates (area)	20,000	30,000	20,000	30,000	100,000
	397,000	314,000	182,500	117,500	1,011,000 4

Need to reapportion stores and maintenance departments.

	Machining	Assembly	Stores	Maintenance	
Stores (using issues)	40%	40%		20%	
Maintenance	50%	25%	25%		2
(using maintenance hours)					

(ie reciprocal service costs)

N.B: Using specified order of closure:

Would expect to close maintenance first as it does 25% of its work for stores, which is larger than the 20% stores does for maintenance. (See Drury page 103).

	Machining	Assembly	Maintenance	Stores	
Apportion maintenance (50% 25% 25%)	91,250	45,625	(182,500)	45,625	
Apportion stores (50% 50%)	81,562	81,563	Nil	(163,125)	4
Total	569,812	441,188			(10)

(b) Overhead Absorption Rate for machinery department is:

$\frac{\pounds 569,812}{50,000}$ = $\pounds 11.40$ per machine hour 50,000 machine hours	1 1/2
Overhead Absorption Rate for assembly department is:	
$f_{441} 199 = f_{5} 99$ par labour hour	1 1/2

- (c) Reasons to use standard costs and activity:
 - need to charge overheads to customers throughout costing period
 - not practical to wait till end of costing period
 - helps smooth out seasonal fluctuations
 - helps planning
 - charge consistent prices to customers

1 mark for each reason, up to a maximum of 3

Problems:

- can cause problem of under/over absorption
- may not recover full costs

1 mark for each problem, up to a maximum of 2

(5)

(d) Expected cost of materials:

£900 x 0.2	=	180
£1,200 x 0.5	=	600
£1,600 x 0.3	=	480
Total		1,260

Price for Order AXB 03:

	Units	£/unit	Total	
			£	
Direct Materials			1,260	2
Direct Labour	25 hrs	£8/hr	200	1
Indirect Costs				
Assembly	25 hrs	£5.88	147	1
Machine	20 hrs	£11.40	228	1
Total Costs			1,835	
Plus 25%			459	1
Total Price			2,294	1
				(7)

(25)

NB the 25 labour hours are assumed to be spent in the Assembly department and 20 machine hours in the Machining department. No information is given in the question to the contray. However, should a student make a clearly stated different assumption then full credit will be given).

(a)

Process A Cost Account

	kg	per kg	£			kg	per kg	£	
Woodpulp	2,500	£9	22,500	1/2	Normal Loss-10%	350	£1	350	1/2
Viscose	1,000	£2.50	2,500	1/2					
Stirrers (400 hrs x £15)			6,000	1/2	Abnormal Loss	150	£15	2,250	1
Checkers (200 hrs x £25)			5,000	1/2					
Overheads	Flat rate		3,600	1	Process B	3,000	£15	45,000	1 1/2
(£25,000 x 32%)	Oncost		8,000						
			47,600				-	47,600	6
									0

Workings

Cost per kg

= <u>Total Cost - Scrap Value on Normal Loss</u> Normal Units Produced

$$= \frac{\pounds 47,600 \cdot \pounds 350}{3,150 \text{ kgs}} = \pounds 15 \text{ per kg}$$

Process B Cost Account

	Kg	per kg	£			kg	per kg	£	
Transfer from Process A	3,000	£15	45,000		Normal Loss (3,200 x20%)	640	£2	1,280	1/2
Finishing agent	200	£50	10,000	1/2					
Finishing staff (200 hrs x £20)			4,000	1/2	Transfer to Finished Stock	2,700	£25	67,500	1
Overheads (£10,000 x10%)	Flat rate Oncost		1,280 5,000	1					
Abnormal Gain	140	£25	3,500	1 1/2					
			68,780				-	68,780	5 (11)

Cost Accounting and Quantitative Analysis Marking Scheme

Workings

Cost per kg

= <u>Total Cost - Scrap Value on Normal Loss</u> Normal Units Produced

 $= \frac{\pounds 65,280 - \pounds 1,280}{2,560 \text{ kgs}} = \pounds 25 \text{ per kg}$

(b) Marks to be awarded are shown in italics.

Normal Loss Account

	£		£	
Process A	350	Bank	350	1
Process B	1,280	Abnormal Gain	280	
		Bank (500 x £ 2)	1,000	1
	1,630		1,630	

Abnormal Gain Account

Abnormal Loss Account

	£		£	
Process A	2,250	Bank	150	1
		(150 x £1)		
		Profit & Loss A/C	2,100	1
		_		
	2,250		2,250	

(6)

	Х	$(X-\overline{X})$	$(X-\overline{X})^2$
	2,460	(150)	22,500
	2,600	(10)	100
	2,650	40	1,600
	2,520	(90)	8,100
	2,790	180	32,400
	2,620	10	100
Σ	15,640	-	64,800

(c) Calculation of Mean and Standard Deviation (using the six values given for the previous periods):

$$\overline{X} = \frac{\sum X}{n} = \frac{15,640}{6} = 2,610 \quad \text{(rounded from 2606.67)}$$
$$S = \sqrt{\frac{\sum (X - X^2)}{n - 1}} = \sqrt{\frac{64,800}{5}} = 113.84$$

2

Setting up the null hypothesis (and assuming that this is a two tail test ie testing that "normal output should be expected to be 2,500kg" per the question requirement. Could also have used a one tail test if testing the Managing Director's comment re: "significantly higher").

H₀:
$$\mu = 2,500 \text{ kg}$$

H₁: $\mu \neq 2,500 \text{ kg}$ 1

This is a small sample (less than 30) so have to use "t" statistic/test

Calculate t statistic :
$$\frac{\mathbf{n} - \bar{x}}{SE}$$

SE: $\frac{S}{\sqrt{n}} = \frac{113.84}{\sqrt{6}} = 46.74$ 1
t: $\frac{2,610 - 2,500}{46.47} = 2.37$ 1

Compare to critical value in student's T distribution table at n-1 degrees of freedom (in this case 6.1 = 5) so value is 2.571

Conclusion: At the 95% significance level, there is insufficient evidence to reject the null hypothesis. The value of losses should remain at 2,500kg, but a larger sample should be taken to enable a more precise estimate of the true average losses.

(NB. It is possible to use the last 5 output figures for testing - as the quote in the question implies. Alternatively, could use the output in part (a) as well as the six given figures and test using seven outputs).

Some slight differences may arise due to roundings/non roundings of figures but full credit will be given where students demonstrate correct methodology and follow calculations through appropriately.

В

1

2

(8) (25)

(a) Different types of standard cost.

Basic standard -	Original benchmark/specification, used for long run comparisons
Ideal standard -	Assumes 100% efficiency all the time May also not include all costs/delays which are inevitable/part of production process. Should not be used for cost comparison/control purposes.
Attainable standard –	Attainable under normal (efficient) operating conditions.
Current standard –	Attainable standard kept updated for price changes.

 $1\frac{1}{2}$ marks each for identification and explanation with a maximum of 6

Public sector use?

Unlikely to be used in purest/strictest form because most public sector is "service" based output with different customers/needs/quality issues etc. Would need to be a repetitive "product" based area – not impossible (eg school meals ?? output from a council run workshop? Etc)

2 (8)

(b) 1,200 Grommits actually produced

Standard cost of 1

Materials	$1 \text{ kg } @ \pounds 2 \text{ per kg} = \pounds 2$
Labour	
Turners	$2 \text{ hrs } @ 10 = \text{\pounds}20$
Finishers	$1 \text{ hr } @ 8 = \pounds 8$
Standard Cost	= <u>£30</u>

Actuals

Materials	$1,500 \text{ kg} @ \pounds 2.20 \text{ per kg} = \pounds 3,300$
Labour	
Turners	$2,500 \text{ hrs } @ 9.5 = \text{\pounds}23,750$
Finishers	$1,200 \text{ hr} @ 8.2 = \text{\pounds}9,840$

Cost Accounting and Quantitative Analysis Marking Scheme

Materials Cost Variance (1,200 x 2) - (1,500 x 2.2) $2,400 - 3,300 = \underline{\pounds900}$ (A)

Materials Price Variance: $1,500 \text{ kg} (2 - 2.20) = \text{\pounds}300 (A)$

Materials Usage Variance: (1,200 kg - 1,500 kg) x 2 = $\underline{\pounds 600}$ (A)

1 mark per variance up to a maximum of 3

Labour Cos	t variance
------------	------------

	Turners	$(1,200 \times 20) - 23,750 =$	£250 (F)
	Finishers	$(1,200 \times 8) - 9,840 =$	£240 (A)
Rate:	Turners	2,500 hrs (10 - 9.5) =	1,250 (F)
	Finishers	1,200 nrs (8 - 8.2) =	240 (A)
Eff:	Turners	$(2,400 - 2,500) \times 10 =$	1,000 (A)
	Finishers	$(1,200 - 1,200) \ge 8 =$	Nil

1 mark per variance up to a maximum of 6

(9)

(c)

- (i) Characteristics of a normal distribution
 - It is a continuous distribution.
 - It is a perfectly symmetrical bell shaped curve.
 - The "tails" of the distribution continually approach, but never touch, the horizontal axis.
 - The mean, mode and median pass **b**rough the peak of the curve and precisely bisect the area under the curve into two equal halves.
 - The distribution is fully defined by the mean and standard deviation.

1 mark per point up to maximum of 4

(ii) Mean is 1,356 grommits 1 Standard deviation is 400. So Z score is $\frac{1500 - 1356}{400} = 0.36$ 2 From tables there is 35.94 % chance of Grommit production being more

1

(8)

(25)

than 1,500.

(a) Costs in the question are a mix of variable, semi-variable, semi-fixed and fixed. Costs need to be analysed between fixed and variable. Semi-variable costs should be split into their fixed and variable elements using the High/Low method:

Direct Labour: (semi-fixed)	Fixed at £27 Above 2,000	2,000 up to 2,000) sessions fixed at	sessions £297,000					
Direct Materials: (variable)	£36,000 / 1,8	$800 \text{ sessions} = \pounds$	20 per session					
Other Direct Expend: (semi-variable)	(£20,600 - £ £17,700 - (£	$(\pounds 20,600 - \pounds 17,700) / (2,200 - 1,800) = \pounds 7.25$ variable $\pounds 17,700 - (\pounds 7.25 \times 1,800) = \pounds 4,650$ fixed						
Heat, Light & Power: (semi-variable)	(£6,400 – 5, £5,600 – (£2	$(500) / (2,200 - 1,800) = \pounds 2,000$	$300) = \pounds 2$ vari 000 fixed	able				
Overheads:	Fixed at £12	0,000						
Cost for 1,996 sessions								
Direct Labour (fixed) Direct Materials (£X Other Direct Expendit) x 1,996) 1re:		± 272 39	2 ,000 ,920	1/2 1			
Fixed Variable (£7.2 Heat, Light and Power	5 x 1,996)	4,650 <u>14,471</u>	19	,121	2			
Fixed Variable (£2 x Overheads (fixed)	1,996)	2,000 <u>3,992</u>	5 <u>120</u> <u>45</u>	,992 ,000 7,033	2 1⁄2			
					(6)			

Cost Accounting and Quantitative Analysis Marking Scheme

(b) Forecast

Year	Quarter	Sessions	4 Qtr Moving	Centred	Actual	Forecast	Forecast
			Ave		centred(%)	1 ei iou	
1999	Q1	500					
	02	450					
	Q2	450	505 5				
	Q3	517	00010	506.125	102%	0	
			506.75				
	Q4	555		507	109%	1	
			507.25				
2000	Q1	505		508	99%	2	
		150	508.75	5 00 255	0004	2	
	Q 2	452	510	509.375	89%	3	
	02	502	510	510.75	1000/	1	
	Q5	325	511.5	510.75	102%	4	
	04	560	511.5	512 375	109%	5	
	עי	500	513.25	512.575	10770	5	
2001	Q1	511	010.20	513.75	99%	6	
			514.25				
	Q2	459				7	
	Q3	527				8	
	Q4					9	
2002	Q1					10	514
	Q2					11	463
	Q3					12	532
	Q4					15	3/0
			2	2	2		3

Average quarterly increase in sessions:

From 506.125 sessions in Q3 of 1999 to 513.75 in Q1 of 2001. Increase of 7.625 over 6 quarters = 1.271 sessions per quarter.

2

Cost Accounting and Quantitative Analysis Marking Scheme

Average seasonal variation: (%)

Q4

Q3

Q1 Q2
1999

1999			102%	109%
1999	99%	89%	102%	109%
2000	99%			
Average	99%	89%	102%	109%

Therefore, forecast using y = 506.125 + 1.271x and adjust seasonally per above table.

(c) <u>Comment</u>

The projected cost is higher due to the higher projected activity. This has increased all the variable costs and has increased the semi-fixed direct labour costs as the 2,000 session threshold has been exceeded and a new member of staff needs to be employed.

The forecast activity figures are different because the Director of Activity based his/her projection on 2001 data, and on only three quarters worth of data. This produced an underestimation of 2002 activity because of:

- General trend is for an increase in sessions year on year (so sessions in 2002 are likely to be greater than in 2001).
- The seasonal trend shows the highest activity in quarter 4 of each year. The Director of Activities only used quarters 1 to 3 in the activity projection so the average for the year is too low.

 $\frac{1}{(5)}$

3

(14)

1

2

1

(25)

Poplar Products Ltd.

(a) FIFO

Date	Receipt	Price	Total	Issues	Price	Value of	S	tock Bala	ances
	(kilos)		Value	(kilos)		issues	(kilos)	Price	Value
		£/kg	£		£/kg	£		£/kg	£
2.Sept	1,000	16.00	16,000		C		1,000	C	16,000
8Sept	2,000	17.00	34,000				3,000		50,000
10Sept				500	16.00	8,000	2,500		42,000
20Sept				500	16.00	8,000			
-				200	17.00	3,400	1,800		30,600
21 Sept	2,500	15.00	37,500				4,300		68,100
2 Oct	1,500	18.00	27,000				5,800		95,100
19Oct				1,800	17.00	30,600			
				700	15.00	10,500	3,300		54,000
26Oct	2,000	20.00	40,000				5,300		94,000
5 Nov	1,000	22.00	22,000				6,300		116,000
12Nov				1,800	15.00	27,000			
				1,100	18.00	19,800	3,400		69,200
17 Nov	1,500	24.00	36,000				4,900		105,200
		•	212,500		-	107,300			1
			2			2			
									(5)

Cumulative Weighted Average

Date	Receipt	Price	Total	Issues	Price	Value of	Stock Balances		es
	(kilos)		Value	(kilos)		Issues	(kilos)	Price	Value
		£/kg	£		£/kg	£		£/kg	£
2 Sept	1,000	16.00	16,000				1,000	16.000	16,000
8 Sept	2,000	17.00	34,000				3,000	16.667	50,000
10 Sept				500	16.667	8,334	2,500	16.667	41,666
20 Sept				700	16.667	11,667	1,800	16.667	30,000
21 Sept	2,500	15.00	37,500				4,300	15.698	67,500
2 Oct	1,500	18.00	27,000				5,800	16.293	94,500
19 Oct				2,500	16.293	40,733	3,300	16.293	53,767
26 Oct	2,000	20.00	40,000				5,300	17.692	93,767
5 Nov	1,000	22.00	22,000				6,300	18.376	115,767
12 Nov				2,900	18.376	53,290	3,400	18.376	62,477
17 Nov	1,500	24.00	36,000				4,900	20.097	98,477
		_	212,500		_	114,024			
		_	2		_	2			

1 (5) (b) Periodic weighted average method.

Under this method a retrospective average price is calculated at the end of the period. NB with the cumulative average price method it is usual to recalculate the new average price whenever a new receipt of material occurs. Thus with the "periodic" method calculations are easier/less frequent. The method has to be applied retrospectively because not all the information needed to calculate the issue price is available until the end of the period.

1 mark for explaining "retrospective at end of year" 1 mark for saying "cumulative is recalculated when new material received" 2 marks for stating "easier and less frequent, and information not available till end of period" (4)

(c) Rising each month at 2%

End of year:
$$(1.02)^{12} \times \pounds 24 = \pounds 30.44$$
 (a 26.8% increase)
 $I = \pounds 1 = \pounds 10.44$ (a 26.8% increase)
Rising each quarter by 3%
End of year: $(1.03)^4 \times \pounds 24 = \pounds 27.01$ (a 12.5% increase)
 $I = \pounds 10.44$ (a 26.8% increase)
 $I = \pounds 10.44$ (b 10.44 (b $10.$

(d) In times of rising prices stock brought earlier will have cost less than the latest stock bought in. Using a LIFO approach, the costs/value of the stock recently bought in is used to price issues. This means that materials left in stock will be valued at the lower/older prices. SSAP 9 states that the LIFO approach does not bear a reasonable relationship to actual costs during a period and implies that this method is not suitable for external reporting. It is also necessary to compare stock values with net realisable value to cater for situations where stock may have become obsolete/deteriorated/unsaleable.

2 marks for explaining that earlier bought stock is cheaper and using LIFO stock values can be much lower 2 marks for stating that these lower/outdated values **not** acceptable for external reporting per SSAP 9 2 marks for mentioning net realisable value and obsolete/unsaleable stock

(6)

(25)