COST ACCOUNTING AND QUANTITATIVE ANALYSIS

Foundation December 2003

MARKING SCHEME

(Copyright)

(a) Initial workings:

Budget/standard (£) 100 80 20	Actual (£) 105 80 (nb Standard cost) 25
(Actual cost less NB : Based on Sta	Budget/Standard cost) andard cost
900 x £25 less 1,	000 x £20
£22,500 less £20	,000 = £2,500 (F)
iance	
900 units x (£25 -	- £20)
Or numerically 90	00 x (£105 – £100)
	= £4,500 (F)
/ariance	
(900 units – 1,000	0 units) x £20
	= £2,000 (A)
e	
(900 units x 5kg x 4,600kg x £9 per	(£10 per kg) less unit
	= £3,600(F)
ce	
4,600 kg x (£10 –	£9)
	= £4,600 (F)
nce	
(900 x 5kg – 4600	0kg) x £10
	= £1,000 (A)
	Budget/standard (£) 100 80 20 (Actual cost less NB: Based on Sta 900 x £25 less 1, £22,500 less £20 riance 900 units x (£25 - Or numerically 90 /ariance (900 units x (£25 - Or numerically 90

Labour Cost Variance

(SC - AC)
$$(900 \times \pounds 16) - \pounds 16,500$$

= £2,100 (A)

Labour Rate Variance

$\Delta H \times (9)$	SR LAR	2 200 hours x (F8 = F7 50	۱
/ 11 / ((20 21.00	,

= £1,100 (F)

Labour Efficiency Variance

(SH – AH) x SR	(1,800 hours – 2,200 hours) x £8 per hour
----------------	---

= £3,200 (A)

(One mark for each of the materials and labour variances. 4 marks in total available for sales variances – 1 mark for establishing the actual contribution margin NB based on standard cost. Then 1 mark each for the sales variance totals) (10)

(b) Different types of standard cost.

Basic standard	-	Original benchmark/specification, used for long run comparisons.
Ideal standard	-	Assumes 100% efficiency all the time. May also not include all costs/delays which are inevitable/part of production process. Should not be used for cost comparison/control purposes.
Attainable standard	-	Attainable under normal (efficient) operating conditions.
Current standard	-	Attainable standard kept updated for price changes.

1 mark each for identification and explanation, up to a maximum of 4 marks

(c) Public sector use?

Unlikely to be used in purest/strictest form because most public sector is "service" based output with different customers/needs/quality issues etc. Would need to be a repetitive "product" based area – not impossible (eg school meals ? output from a council run workshop? Etc.) Much more usual to use in a repetitive manufacturing situation with identical products.

1 mark for each valid point, up to a maximum of 4 marks

(Difference)²

1,050	1,050	0	0		
950	1,050	150	22,500		
1,200	1,050	(150)	22,500		
1,050	1,050	0	0		
1,150	1,050	(100)	10,000		
900	1,050	100	10,000		
6,300			65,000		
In ascen Mean is	iding orde 6,300/6 =	er: 900 = 1,050	950 1,050 1	,050 1,150 1,200	1
Median i (1,050 +	is middle 1,050) /	value. As eve 2 = 1,050	n number of val	ues median is	2
Mode (c	ommone	st value) is 1,0)50		1
Standard	d Deviatio	on is √65,000/	6 ie √10,833.33	= 104.08	3
or √65,0	00/5 ie $$	13,000 = 114.	02		
					(7)

(25)

(d) Mean, median, mode and Standard deviation calculation.

Difference

Units

Mean

(a) Process A account

	£			£	
Direct materials (100kg x £5)	500	1/2	Normal loss (10 kg x £3)	30	1
Direct labour (20 hours x £10)	200	1/2	Abnormal loss (5kg x £8)	40	1
Overheads (25% x labour cost)	50	1	Transfer to Process B	680	1
			(85 kg x £8 per kg)		
Total	750		Total	750	

5

Process B account

	£			£	
Transfer from Process A	680	1/2	Normal loss (10 kg x £10.50)	105	1
Direct materials (115kg x £10)	1,150	1/2			
Direct labour (30 hours x £12)	360	1/2			
Overheads (50%x new materials cost)	575	1/2	Transfer to finished goods	2,730	1
Abnormal gain (5kg x £14)	70	1	(195 kg x £14 per kg)		
Total	2,835		Total	2,835	
				5	

(10)

2

2

(b) Normal Loss Account

	£		£
Process A	30.00	Scrap sales	30.00
Process B	105.00	Abnormal gain	52.50
		Scrap sales	52.50
	135.00		135.00

Abnormal Gain Account

	£		£
Normal loss	52.50	Process B	70.00
Profit & loss A/C	17.50		
	70.00		70.00

Abnormal Loss Account

	£		£
Process A	40.00	Scrap sales	15.00
		Profit & loss A/C	25.00
	40.00		40.00

2

Scrap sales Account

	£		£
Process A	30.00	Bank/cash	97.50
Process A	15.00		
Process B	52.50		
	97.50		97.50

2 (8)

(c) Alternative treatment of scrap value:

NB: the question is asking about alternative treatment of scrap value ie the accounting treatment. Answers which suggest alternative uses/treatment of the material itself (eg melting down and reusing) should not receive any credit.

The normal treatment is to credit to the appropriate process account. This is the strictly technical correct treatment – however, it might be that scrap amounts are infrequent , of small quantities, and in particular of small value. The cost/time/trouble effort etc of identification might outweigh the value of technically correct treatment. It is possible to credit the value of all scrap amounts to an overhead account and reduce overheads for the period. Thus the doctrine of materiality might be important here.

1 mark for reason for using alternative 1½ marks for explaining alternative ½ mark for referring to materiality doctrine (3)

(d) Investment of £10,000 at an interest rate of 0.2% per month over a period of 3 years (36 months.)

Simple interest: $f10,000 \ge 0.2\% = f20 \ge 36$ months = $f720$	2
Simple interest. $210,000 \times 0.2\% = 220 \times 30$ months = 2720	2

Compound interest: Formula for this is $S = P(1 + r)^n$

So here £10,000 $(1 + 0.002)^{36}$ 2ie £10,000 x 1.074578 = £10,745.782So interest earned (compound) is = £745.78(4)

(25)

(a)

	Sales	Moving	Moving	Period	Trend	Seasonal	Calculated	Residual
		average	average		Y=a+bx	adjust	sales	
Day 1 (M)	62							
Day 1 (A)	56	198/3	66	0	66	(10)	53	(3)
Day 1 (E)	80	213/3	71	1	75	5	78	(2)
Day 2 (M)	77	240/3	80	2	84	(7)	80	3
Day 2 (A)	83	264/3	88	3	93	(10)	80	(3)
Day 2 (E)	104	294/3	98	4	102	2	105	1
Day 3 (M)	107	306/3	102	5	111	(4)	107	0
Day 3 (A)	95	333/3	111	6	120	(25)	107	12
Day 3 (E)	131	363/3	121	7	129	2	132	1
Day 4 (M)	137	408/3	136	8	138	(1)	134	(3)
Day 4 (A)	140	441/3	147	9	147	(7)	134	(6)
Day 4 (E)	164							
	1	-	2		2	2	11/2	1
							(b)

Using the moving averages values from the above table and the high/low method, the increase in the number of sales is from 66 to 147 over 9 periods. So average increase per period is (147 - 66) / 9 = 81/9 = 9

So the equation of the line using the formula: -y = a + bx is thus y = 66 + 9x

(10)

1

2

(b)

٦

(b) Average seasonal adjustments:

	Morning	Afternoon	Evening
Day 1		(10)	5
Day 2	(7)	(10)	2
Day 3	(4)	(25)	2
Day 4	(1)	(7)	
Average	- 4.0	- 13.0	+ 3.0
	1/2	1/2	1/2

Thus calculated values will be given by y = 66 + 9 x plus seasonal adjustments of -4.0 (for morning) -13.0 (afternoon) and +3.0 (evening.) (NB residual/random variations given in final column above.) (4)

()	U		ι Ο				, (b)	
	Period	Sales			Trend = Y	Seasonal	Calculated	Residual
					= a + bx	adjust	Sales	
	X	Y	XY	X ²				
Day 1 (M)	1	62	62	1	53	9	55.25	6.75
Day 1 (A)	2	56	112	4	62	(6)	53	3
Day 1 (E)	3	80	240	9	71	9	79.25	0.75
Day 2 (M)	4	77	308	16	80	(3)	82.25	(5.25)
Day 2 (A)	5	83	415	25	89	(6)	80	3
Day 2 (E)	6	104	624	36	98	6	106.25	(2.25)
Day 3 (M)	7	107	749	49	107	0	109.25	(2.25)
Day 3 (A)	8	95	760	64	116	(21)	107	(12)
Day 3 (E)	9	131	1179	81	125	6	133.25	(2.25)
Day 4 (M)	10	137	1370	100	134	3	136.25	0.75
Day 4 (A)	11	140	1540	121	143	(3)	134	6
Day 4 (E)	12	164	1968	144	152	12	160.25	3.75
Totals	78	1236	9327	650				
			1	1	2	2	11/2	1
							(b)

Establishing the trend line (using least squares regression method) (a)

Trend line is given by y = a + bx

From formula sheets:

$$b = \frac{n \sum xy - \sum x \sum y}{n \sum x^2 - (\sum x)^2}$$

$$a = \frac{\sum y}{n} - \frac{b \sum x}{n}$$

So b is (12 x 9327) - (78 x 1,236) ie 15,516 ie 9.041958
12 x 650 - 78 x 78 1,716

So $y = 44 + 9x$ is used to calculate the estimated figures above.	2
--	---

2

(10)

(b) Average seasonal adjustments:

	Morning	Afternoon	Evening
Day 1	9	(6)	9
Day 2	(3)	(6)	6
Day 3	0	(21)	6
Day 4	3	(3)	12
Average	2.25	(9)	8.25
	1/2	1/2	1/2

Thus calculated values will be given by y = 44 + 9x plus seasonal adjustments of +2.25 (for morning), -9.0 (afternoon) and + 8.25 (evening).

(c) If only 0.2% of buns may be underweight then \emptyset (x) = 99.8 % Z = -2.88. The Z score for the current machine is

						(75 – <i>x</i>)	
To calculate	the	setting	for	the	current		- = -2.88 so the setting for the
machine						o =	old machine is 76.44 grams
						0.5	
							1 mark for 2.88 from tables
							2 marks for correct calculation
							(3)

(4)

1

1

(d)

To calculate the setting for the new machine $\begin{array}{c} (75 - x) \\ ----- \\ 0.2 \end{array} = -2.88 \text{ so the setting for the new machine is 75.576 grams} \\ 0.2 \end{array}$

Now can calculate the proportion of buns that will need the extra packaging.

Using the old machine

Using the new machine

$$Z = \frac{77 - 75.576}{0.2} = 7.12$$
 But Z values in the normal distribution only

Go up to a value of 4 (for Z = 4 then \emptyset (x) = 100 %) so with the new machine we will not expect any buns to need the extra packaging. Can now calculate the weekly cost of using the two machines.

Old Weekly bun content requirement is 2,000 x 76.44 gm = 152,880 gm Weekly cost of content is therefore 152,880 gm x 0.05p = £76.44 1 Each week 13.14 % of 2,000 buns need extra packaging = 262.8 extra buns Weekly cost of extra packaging is therefore 262.8 x 0.5p = £1.314 1 New Weekly bun content requirement is 2,000 x 75.576 gm = 151,152 gm Weekly cost of content is therefore 151,152 gm x 0.05p = £75.576 1 (NB There is no extra packaging costs with this machine) Extra weekly cost of hiring the new machine is £25 Conclusion Old costs are £77.75 but new costs £75.57 so save £2.18 But extra hire cost is £25 per week, so financially not worth it. 2 (8) (25)

(a) Cost Accounts for the month

Raw Materials					
Balance b/f (CLC)	20,000	Work in progre	ess (WIP)	40,000	
CLC	80,000	Factory o/h		5,000	
-		Bal c/d		55,000	
-	100,000			100,000	
					1
Work in Progress					
Balance b/f (CLC)	40,000	Finished good	s 140,0	000	
Raw materials	40,000	Bal c/d	18,0	000	
Wages	50,000				
Factory overhead	28,000				
_	158,000		158,0	000	
					11/2
Finished Goods					
Balance b/f (CLC)	5.000	Cost of sales (COS) 1	20.000	
WIP	140,000	Bal c/d	/	25,000	
-	145,000		1	45,000	
-					1
Wages	//D	50.00			
CLC 60,000 W	/IP	50,00	00		
F	actory over	head 10.00	00		
		10,00			
60,000		60,00	00		
					11/2
Cost Ledger Control					
Sales 140,000	Balance b	/f (CLC) 65	5,000		
Bai c/d 98,000	Raw mate	riais 80),000		
	Factory ov	ol verheads 18	5,000		
	Administra	ation 6	5,000 S 000		
	Auministre		,000		
	Profit	12	2,000		
238,000		238	3,000		
					2
_					
Factory Overheads	14/15				
Materials 5,000	WIP		28,000		
vvages 10,000	(Under	IU IOSS (P&L)	∠,000		
			30 000		
			50,000		

2

Administration				
CLC 6,000 P&L 6,000				
6,000 6,000				
				1/2
Cost of Sales				
Finished goods <u>120,000</u> P&L _	120,000			
				1/2
Salaa				
Sales				
F&L 140,000 CLC 140,000				1/
				/2
Profit & Loss				
COS	120.000	Sales	140.000	
Factory overheads (Under absorbed)	2,000		- ,	
Administration	6,000			
Profit [CLC]	12,000			
	140,000		140,000	
				11/2
				(12)

(b) The main differences between integrated and interlocking systems of cost accounts:

An integrated system essentially uses just a single set of books with all cost and financial accounting transactions recorded together. An interlocking system keeps a separate cost and financial accounts ledger with corresponding double entries in the interlocking system being provided by a Cost Ledger Control Account.

Advantages of each approach:

Integrated –	Fewer entries, less complex, less time consuming etc.	1½
Interlocking-	More flexible (eg stores pricing, depreciation methods), more suited to purpose etc	1½

(5)

2

(c) The differences between systematic, stratified, quota and cluster sampling.

Systematic

After a randomly selected start point or points, a sample item would be selected every nth sample. Gap is the sampling interval and is itself often randomly selected. Need to ensure no regular pattern/bias coinciding (or not) with sample interval.

Stratified

Population is divided into groups or strata. Random samples are then taken from each group, in the proportions that each group bears to the population as a whole.

Quota sampling

This type of sample is not pre selected but is chosen by interviewer on the spot up to the level of a quota. To avoid undue bias the quota is sub-divided into various categories eg male/female, young/old, etc. The interviewer is given quotas for each category and uses discretion to choose interviewees.

Cluster sampling

A few geographical areas are selected at random but then every household in the selected area is interviewed.

(2 marks for each well explained definition) (8)

(25)

Overhead	Basis	Totals	Machining	Assembly	Stores	Maint
		£	£	£	£	£
Rent	Area	16,000	8,000	2,000	4,000	2,000
Machine	Values	100,000	75,000	20,000	2,500	2,500
depreciation						
Building ins.	Area	8,000	4,000	1,000	2,000	1,000
Personnel	Employees	64,000	32,000	16,000	8,000	8,000
Machine ins.	Values	4,000	3,000	800	100	100
	Totals	192,000	122,000	39,800	16,600	13,600
		1	1	1	1	1
						(5)

(a) Overhead analysis sheet showing apportionments

(b) Reciprocal service department costs:

Reapportion stores costs on the basis of number of stores issues. Reapportion maintenance costs on the basis of number of jobs carried out.

(NB using continuous another method/repeated distribution method)								
Totals b/f			122,000	39,800	16,600	13,600		
	1							
Reapportion stores	(5/8, 2/8, 1/8)		10,375	4,150	(16,600)	2,075		
Reapportion mtce	(1/5, 3/5, 1/5)		3,135	9,405	3,135	(15,675)		
Reapportion stores	(5/8, 2/8, 1/8)		1,959	784	(3,135)	392		
Reapportion mtce	(1/5, 3/5, 1/5)		79	235	78	(392)		
Reapportion stores	(5/8, 2/8, 1/8)		49	19	(78)	10		
Reapportion mtce	(1/5, 3/5, 1/5)		3	7	0	(10)		
	Totals		137,600	54,400				
			2	2				

(NB using continuous allotment method/repeated distribution method)

(Alternative method using algebra/simultaneous equations method)

 $S = 16,600 + 1/5 \times M$ M = 13,600 + 1/8 x S Multiply first equation by 5 gives 5S = 83,600 + M and so rearranging and substituting in second equation gives

4.875 S = 96,600 so S = <u>19,815.384</u>

M = 13,600 + (19,815.384) / 8 So M = <u>16,076.923</u>

Totals b/f		122,000	39,800	16,600	13,600
	1				
Reapportion stores	(5/8, 2/8, 1/8)	12,384	4,954	(19,815)	2,477
Reapportion mtce	(1/5, 3/5, 1/5)	3,216	9,646	3,215	(16,077)
	TOTALS	137,600	54,400	0	0
		1	1		

1⁄2

1/2

1/2

CAQAXM8

Overhead absorption rates:

NB: for machining department both "name" and comparative number of hours budgeted suggests that a machine hour rate basis of absorption should be used.

For the Assembly department the "name" gives no indication but comparative hours in this case suggests a labour hour basis of absorption is probably best.

Machining department: \pounds 137,600/40,000 machine hours = \pounds 3.44 per machine hour.	1
Assembly department: $\pounds54,400/20,000$ labour hours = $\pounds2.72$ per labour hour.	1

(7)

1

(c) Under/over absorption

Machining department:

Overhead absorbed £3.44 x 41,600 hours =	£143,104	
Actual overhead cost incurred =	£142,690	
	£414	over absorbed

Reasons:

Budget overhead Actual overhead	(£137,600) (£142,690)		
Expenditure	£5,090	over spent	1/2
Activity	1,600	extra hours x £3.44 per hour	
·	£5,504	over absorbed	1/2

Assembly department:

Overhead absorbed £2.72 x 19,600 hours =	£53,312		
Actual overhead cost incurred =	£53,910		
	£598	under absorbed	
			1

Reasons:

Budget overhead	(£54,400)		
Actual overhead	(£53,910)		
Expenditure	£490	underspent	1/2
Activity	400	less hours x £2.72 per hour	
	£1,088	under absorbed	1/2

(4)

(d) Reasons to use predetermined overhead absorption rates are as follows:

- need to charge overheads to customers throughout costing period. •
- not practical to wait till end of costing period. •
- helps smooth out seasonal fluctuations.
- helps planning.

(e)

charge consistent prices to customers.

1 mark for each valid reason up to a maximum of 3 marks

Reconciling Costing and Financial Profit £ Costing profit 5,500 1/2 1 Add back notional rent 4,000 9,500 Less debentures paid 3,000 1 6,500 Add received dividends 2,000 1 8,500 Stock adjustment 500 1 Financial accounting profit 8,000 1

NB: Cost accounts show o/s £22,000 and c/s £20,000 ie £2,000 used

But financial accounts show o/s £23,500 and c/s £21,000 ie £2,500 used

So adjustment is £500 (cost of stock is less in cost accounts compared with financial accounts.) (6)

(25)

 $\frac{1}{2}$ mark for heading