Eton College King's Scholarship Examination 2011

	Still
	Ten.
Eton College King's Scholarship Exami	nation 2011
CIENCE (SECTION 2 - DATA ANALYSIS)	(30 minutes)
Candidate Number:	
Vrite your candidate number, not your name, in the space provided	d above.
Read the information and answer the questions only in the spaces p	rovided.
ou are expected to answer all the questions.	
In questions involving calculations, all your working must be show	7.
For examiners' use only.	
Total [40]	

Calculate the surface area of one face of the cube in cm². (a)

[1]

Calculate the volume of the cube in cm³. (b)

[1]

Bruce's teacher explains that the density of the cube can be calculated using the equation

density =
$$\frac{\text{mass}}{\text{volume}}$$

Calculate the density of the cube in g/cm³. Show your working. (c)

______[2]

The cube has a weight due to the Earth's gravitational field; the Earth exerts a gravitational force of 10 newtons on each kilogram of mass (i.e. its field strength is 10 N/kg).

(d) Calculate the weight of the cube in newtons. Show your working.

[Turn over]

[2]

$$pressure = \frac{weight}{contact area}$$

(e)	Calculate the pressure exerted by this cube when it rests on a flat surfact N/cm ² . Show your working.	e, in
metres	are not standard units; the metre is the standard unit of length used by scient	entists
(f)	Calculate the number of square centimetres in one square metre.	
(g)	Calculate the number of cubic centimetres in one cubic metre.	
(h)	Express the pressure exerted by the cube above in N/m ² .	
(i)	Express the density of the cube above in kg/m ³ .	

Bruce measures the pressure exerted by each cube when placed face down on a flat, horizontal surface. The table below contains his data and other relevant information.

Cube	Material	Density (g/cm ³)	Pressure Exerted (N/cm ²)
1	Lead	11.3	0.317
2	Iron	7.8	0.248
3	Osmium	22.6	0.504
4	Gold	19.3	0.453
5	Aluminium	2.7	0.122

(a)	Explain why the five cubes will not be the same size.	
		[2]
(b)	Which of the five cubes has the greatest side-length?	
		[1]
(c)	Cube 4 has a side-length of L cm. What is the side-length of cube 5, exp a multiple of L ?	ressed as
		[2]

On the grid provided below, plot a graph with Density on the X-axis and Pressu. (d) Exerted on the *y*-axis. Include a line of best fit.

Bruce's teacher informs him that the pressure exerted is not proportional to the density of the block.

	Studes
e's tea «.	her informs him that the pressure exerted is not proportional to the density of the
(e)	Suggest a feature of your graph that confirms this.

In order to obtain a graph showing proportional behaviour, Bruce's teacher suggests that he plots Density² (density squared) on the *X*-axis and Pressure³ (pressure cubed) on the *y*-axis.

Complete the table below with values of Density² and Pressure³. The first set of (f) values has been calculated for you.

[4]

Density	Density ²	Pressure	Pressure ³
(g/cm^3)		(N/cm^2)	
11.3	128	0.317	0.0319
7.8		0.248	
22.6		0.504	
19.3		0.453	
2.7		0.122	

On the grid provided on the next page, plot a graph with Density² on the x-axis (g) and Pressure³ on the *y*-axis. Include a line of best fit.

[5]

(h)	Using your graph, or otherwise, determine the mass of the cubes.	
		 [3
		_ []

Student Bounty Com

Student Bounty.com A solid piece of pure copper and a solid piece of pure lead (not necessarily of the same size) are stuck together. The composite object is found to have an average density of 9.5 g/cm³.

The mass of an individual lead atom is three times that of a copper atom and the density of copper is 9.0 g/cm³.

(i)	What percentage of all of the atoms within the composite object are copper atoms?
	[

[END OF PAPER]