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Introduction

In this chapter, rotational motion of a rigid body about a fixed axis of rotation is discussed.
A rigid body is a system of particles in which interparticle distances do not change and the
body cannot be deformed no matter how large a force is applied to it. Although a solid body
is not a rigid body, it can be so considered for most of the practical application

7.1 Rotational Kinematics and Dynamics

In rotational motion of a body, all its particles move on circular path
definite straight line, called the axis of rotation. Kinematics deals
considering its cause, whereas dynamics deals with motion alongwi

of the body.

7.2 Relations between variables of rotational and |Ij r motion

(a) Anqular displacement: ¥

The figure shows a rigid body rotating about a
axis OZ normal to the plane of the figure. P an
the positions of a particle of the body at tim
t + At. Angle 6 made by the line joining th
the centre of its rotation with a refe
shows its angular position at time t_(Si
6 + AO is its angular position at tim

The change in angular position rticle is called _

its angular displacement. The isplacement of reference

the particle P is A@ in time line

As the interparticle distance not change in a rigid body, all its particles will have the
same angular displa il a given time. Hence, the angular displacement, A6, of the

particle P can be co refl as the angular displacement of the rigid body.

and anqular velocity:

speed of a particle or of the rigid body is defined as

ular displacement _ A®©

<m> — —
time interval At

——t The unit of ® is radian/s or rotation/s.

The direction of angular velocity is given by the right handed screw rule. When a right
handed screw is kept parallel to the axis of rotation and rotated in the direction of rotation
of the body, the direction of advancement of screw gives the direction of angular velocity.

(c) Scalar relation between angular velocity and linear velocity:

As shown in the figure, the particle P covers a linear distance equal to the arc length PP’




7 - ROTATIONAL MOTION Page 2

in time At. Hence, average linear speed,

<v> = arc Iezgtth PP = rAAtG = r <®>, Wwhere r is the radius of the circular path.

The instantaneous linear speed is given by

. r A@ rde
v = Iim — = — = re
At—>0 At dt
( Note that the angular velocity of all particles of the rigid body rotadi a fixed axis of
rotation is the same for all the particles, whereas the linear speed of article depends

upon its distance (r) from the axis of rotation.)

Linear velocity is a vector quantity and its direction at a int @n the path of motion is
tangential to the path at that point. In the above equation, r @nd o are the magnitudes of

- - -
the vector quantities v, r and o.

Vector product of two vectors:

- -
The vector product, also known as cross praduct, two vectors A and B having an angle
0 between them is defined as
- - - - n
AxB = 1AIIBlsind n,
n - -
where n is the unit vector ng toWthe plane containing A and B having direction given
by the right handed screw rul right handed screw kept perpendicular to the plane
- - - -
containing A and B is d A towards B, the direction of advancement of screw

N

gives the direction of

Properties of vect duct of two vectors:

- -
+ A xC

The¥cross product of two parallel vectors, in the same or opposite directions, is a zero

- - -> - n
(4) If A LB, then AxB = ABn (" sin90° =1)
N N N N N N N N N N N N N N N
(5) ixi = jxj=kxk =0 and i x j=k, jxk =1, k xi =]
- N N N - N N N
(6) If A = Ay +ij + Ak and B = By +Byj + By k, then
- - N AN N
AxB = (AyBZ -AZBy)i + (A;By -AyBy)j +(AXBy-AyBX)k
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ik
> o>
AxB = |Ax Ay A

(d) Vector relation between anqgular velocity and linear velocity:

_)
The position vector r w.r.t. the centre of the circular

- -
path of a particle, angular velocity ® and linear velocity v

%
are shown in the figure. As v is perpendicular to the plane

- -
formed by @ and r , the scalar relation v = r ® can

written in the vector form as

- > o
vV = o X T

(e) Angular_acceleration: @
The average angular acceleration in the time% At is
- change i i
<a> = ge .|n ar'lgular velocity > A
time interval \ t

and the instantaneous angular dcc ti at time t is given by

- -
- . Ao d
o = lm 22 - 29

e of change of angular velocity.
At—>0 At

Ql

%
is in the difection of A ® and in the case of fixed axis of rotation, both are parallel to
the axis. Th itQof & is rad/s? or rotation/s 2.

etween linear acceleration and angular acceleration :

- % % % - - - .
the equation v = ® X r with respect to time gives the linear
- -
d - - dr do -
— (o X r) = ® X + — x r
dt dt dt dt
-> - -> -
= (0 xVv)+(axr)
From the figure on the previous page and using right handed screw rule it can be found that
- -
the direction of ® X% v is radial towards the centre. Hence, it is called the radial component,

i d . . i
ar, of the linear acceleration a.




7 - ROTATIONAL MOTION Page 4

- -

Similarly, the direction of a x r is tangential to the circular path at the position of the
- -
particle. Hence it is called the tangential component, at , of the linear acceleration a .

- - - > > - -

a = a + ag Joa = ar© + art (> a L1 at)

. . . . % .
Even if o = 0, that is the angular velocity is constant, a, is not zero.QAs angular
. . % . ﬁ
displacement, 0, angular velocity, ® and angular acceleration, a ar ame for all the

particles of a rigid body, they are known as variables of the rotatio k

7.4 Torque

Torque is a physical quantity of rotational dynamics who 4
role in rotational motion is similar to the role of force

translational motion. )
ﬂ &
(a) Torgue acting on a particle: d
. the
e

LY
r

FI

Consider a particle P having position vecto @ 5 ﬂjﬁﬂ
origin O of a co-ordinate system on whij C F acts 7

- - " - ﬂ
as shown in the figure. The angle b r¥and F is 6. ﬁ 12

0 > X
_)
The torque T  acting on th [e¥w. r.t. point O is
defined as
- - - £
T = r xF
T = rFsing = r 6) = F(OQ)

rpendicular distance of the line of action of force from O)
nthof fdrce w.r.t. point O

- - -
ion of T is perpendicular to the plane formed by r and F and is obtained

the right handed screw rule. The magnitude and direction of torque depends on the
on of the reference point and hence it is necessary to mention the reference point
ile defining the torque of a particle.

(b) Torgue acting on a system of particles:

As the internal forces between the particles of a system are equal in magnitude and opposite
in direction, the resultant torque due to them is zero. The resultant torque acting on the
system is the vector sum of torques acting on its particles having position vectors,

- - - - - - )
ri, ro, .., rn due to external forces, Fq, Fo, .., F, respectively.
- - - -> - -> - - - -

T = nnxk + 1mpxkh + ..+ mxF = T + T, + ...+ T,
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(c) Torgue acting on a rigid body:

The figure shows a rigid body rotating about a fixed axis

- - - »
OZ. Fq, Fy, .., F, are the forces acting on its particles
- - -
with position vectors rq, ro, ..., Iy respectively.

9
The torque, T, acting on the rigid body is the vector

sum of torques acting on its particles.

> - > - 0 > X
T =371 =3 mxr
n n
i j k £
= z Xn  ¥n <Zn
N | Fax Fny Fnz

N N
Z [YnFnz - ZnFny]l i+ [2zn Fnzl | + [ XnFny - ynFnx] k
n
Here, as the rotation is consider

z-axis, only the z-component of torque is

N

responsible for the rotation. In if rotation is about a fixed axis with n as the unit
_) N
vector on it, the component gf sponsible for rotational motion is T + n.

(d) Physical expl f the definition of torque:

Suppose a forc® F acts on a particle P of a
¢ -

rigid body, osition vector r w.r.t. O,

and the tates about a fixed axis passing

throu erpendicular to the plane of the
- -

ngle between F and r is 6. The

fi
- -
onent of force, F cos 6, parallel to r is

ffective in producing rotational motion. The component, F sin 6, produces the rotational
tion about the axis through O.

- -
More effective will be the rotational motion, larger the value of | FI, | r I and/or sin#.
Thus, the effectiveness of rotational motion depends on rFsin & which is known as torque.

- - -
Vectorially, Torque, T = r x F
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Thus, torque is the measure of effectiveness of force in producing rotational motion.

(e) Couple: Y
“Two non-collinear forces, equal in magnitude and opposite
in direction, constitute a couple. The figure shows forces, .
— -
F1 and Fy, acting at points P and Q of a rigid body
- ., . % % .
having position vectors, r; and ry, respectively w.r.t. to O. P
These forces are equal in magnitude and hence constitute a
couple. Here, L "
- - - - -
T=T1XF1+I‘2XF2
- - - - - - 2
= rxk - rxkK [ F =- F ]
- - - - - .
(ri -r2)xF =1lrp -2l (F1) sin(n -\8)
- - - - -
= 1lrp - rpl F1sin® where m - 0 is the(@n ween rp - rp and Fqp.
Moment of a couple = Magnitude of for onstituting couple x perpendicular distance
between the orges.

(f) Equilibrium of a rigid bod

-> > - — -

If Fp, Fo, .. Fn are the fogc on a rigid body and T; + T, + .. + T, are
the torques on it due to % , then
(i) for translational rium, z Fx, = > Fy, = > Fz =0 and
n n
- -
(i) for rotationaljequilibrium, T = > T, =0
n

ar_momentum_of a particle g P=mv

K.-'

4 a .

der a particle Q of mass m having position vector OQ 0

%

= r moving with velocity v and having linear momentum 5"

- - - - T .
p = mv. The angle between r and p is 0. The R
coordinate axes are so chosen that the particle and its *

motion are in (X, y) plane. 0 > %

The angular momentum of the particle w.r.t. point O is
defined as

- - -
I = rxp =rpsind = p(OR) 7
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= p x (perpendicular distance of linear momentum
vector from the reference point)
= Moment of linear momentum

The unit of angular momentum is kg m?/s or Js.
lts dimensional formula is M*L®T" %

- - -
The direction of | is perpendicular to the plane formed by r and p and obtained using
_)
the right handed screw rule. In the present case, | is in the OZ direc
_)
The magnitude and direction of | depend on the selection of re oint and hence

while defining the angular momentum of a particle it is necessary, to mMention the reference
point.

(b) The relation between angular momentum of tj Ig
and torgue acting on it:

- - -
Differentiating equation | = r x p w.r.t. to
%
dl -
— = |r x —
dt
- -
dp . - dr ) -
But ot = rate of change of i r mentum = force F and ot = velocity v
_)
| - b d
— = (r x F) + (vix
dt
_)
ar = (r x (As v and p are in the same direction, v x p = 0)
Thus, “the_ti change of angular momentum is _equal to the torgue.” This statement
is similar _to ewton’s Second Law of motion that “the time rate of change of linear
momentu i to_the force.”

r momentum of a system of particles:

- - -
ngular momentum of a system of n particles having angular momenta I, lo,..., In is

- - - -
L =11 + 1l +...4 Iy

- - - -
dL _ diy N dlo +__+d|n
dt dt dt dt
- — -
=T, + T, + ...+ T,

%

= 7T

Thus, the time rate of change of total angular momentum of a system of particles is equal to
the resultant external torque acting on the system.
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(d) Angular momentum of a rigid body:

All particles of a rigid body move on circular paths in aplane perpendicular to the axis of
rotation and hence their linear momenta are in this plane only. Taking position vector of each
particle w.r.t. the centre of its circular path, its angular momentum will be parallel to the

- -
axis of rotation. Also, for each particle, r and p are perpendicular to each r.
- - - - - - - - -
L =1y + 1l +..4 15 = (rg x pp)+(r2 x p2) +...+ (ry x
- - o
Ll = rypg + rops + ... + rypn (- r L p and all vect n . are parallel)
= r{mqVvy + rpomoVo + ... + IyMpyVp (v p=mv)
\ 2
= m1r1203 + m2r22(o + ...+ mnrnzw (o ()
= (mlrl2 + m2r22 + .+ mnrnz) O
- - 2 2
ILl = 1 lol, where | = mqri® + mo ..+ mprp
| is called the moment of inertia of the about the given axis of rotation.
- - } - -
As L and  are parallel to the S rotation, L =1 ®.
- -
dL do - 4
— =1 — =1 «a
dt dt
Law of conservati gular momentum:
. -
In the above eguation; = 0, L = constant. Hence, “In the absence of resultant
external torque, the ular momentum of a rigid body remains constant.” This statement is

f conservation of angular momentum.

having mass m moves in an elliptical
_)

round the Sun with linear velocity v as

wn in the figure. The perpendicular distance of

_)
v from the Sun is d.

the angular momentum of the planet w.r.t.
the Sun is

L = mvd ... ... ... .. .. .. ... (1)
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Area of the triangle SQP is A = %(SQ)(PQ) = %(d)s (" PQ=s5s)

dA

_ 1 ds _ 1
e E(d) i E(d)v e e e e (2)

From equations (1) and (2), we get

dA

ar = ZL = constant ( °." torque due to gravitational force on P b w.r.t. the
m

Sun is zero and so L is constant.)

This equation represents Kepler's second law for planetary motion ted’ as “The area swept
by the line joining a planet with the Sun per unit time, called areal™ velocity, is constant.”
This is the geometrical representation of the law of conser of @ngular momentum.

7.7 Moment of inertia

If mq, mo, .., mp are the masses of the parti 0 gid body and rq, ro, .., 1y are

their perpendicular distances from a given axi S ly, then the moment of inertia of the
body corresponding to the given axis is given by

I = m1r12 + m2r22 +

ds on the selection of the axis and the distribution

The magnitude of moment of i ‘
i and dimensional formula is M 1L 2TO.

of mass about it. Its S|

- -
The equations L =1 | o are analogous to the equations of linear motion
- - -
P =Mv and F respectively which shows that the moment of inertia plays the

same role in rofational motion as the mass plays in linear motion. The moment of inertia is
the inertia fo ion@h motion just as the mass is the inertia for linear motion.

s of gyration Q_)

rigid body of mass M consists of n particles each of

M = mn.
oment of inertia of the body about a given axis, T
m_|
2 2 2
M(r + M+ .+ ) I

I = mr? + mrp? + ..+ mrp? = L 2 n = MK? 2 m
n _

M3

)

where, K is called the radius of gyration corresponding to the given
axis and is the mean of the squares of perpendicular distances of the )
particles of the body from the given axis.
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7.8 (b) Two theorems regarding moment of inertia

(i) Parallel axes theorem: The moment of inertia (1)
of a body about a given I, I
axis is equal to the sum of its moment of inertia 1. about
a parallel axis passing through its centre of mass and the
product of its mass and square of perpendicular distance
(d) between the two axes.

| = 1. + Md?

(ii ) Perpendicular axes theorem: Q

(a) Eor laminar bodies: For laminar bodies, the

moment of inertia |,
about Z-axis normal to its plane is equal to the
sum of its moments of inertia about X-axis,

I x and Y-axis, Iy.

l, = Ix + 1y F\
0 > X

(b) Eor_three-dimensional bodies: The s
moments of inertia of a three dimengio
about any three mutually perpendi
drawn through the same point i
the moment of inertia of the out that z
point.

Ix+|y+|z:2|

7.9 Calculation of ent of inertia of certain symmetric objects

of a thin uniform rod about an axis,
its centre and perpendicular to its length:

(a) Moment ine

assi

its centre O and perpendicular to its length, consider O as origin and X-axis
gth of the rod. A small element of length dx of the rod is at a distance x from

oment of inertia of this element about yy' is ¥
+

Ide-x2 .. moment of inertia of the rod,
| :c—x—}dx{—
+— +l :

- [ee - w2 ot 1T
| 3] ¢ % e % >
2 2 "
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(b) Moment of inertia of a thin ring or a thin walled hollow cylinder or
a thin walled hollow sphere:

As the entire mass, M, of a thin ring is at the same distance, equal to the radius R of the
ring from its centre, the moment of inertia of a thin ring about an axis passing_through its
. . . 2 - .
centre and perpendicular to its plane is MR". Similarly, the moments of inerfia
walled cylinder about its geometric axis or of a thin walled hollow sphere
are also given by MRZ, where M represents their mass and R their radii.

(c) Moment of inertia of a disc or a solid cylinder:

To calculate moment of inertia of a disc of uniform thickness

radius R and mass M about an axis passing through its centre an
perpendicular to its plane, consider an element of the disc _in the
form of a thin ring of thickness dx at a distance x

centre. Mass of this ring is 2mxdx-t-:p, where p is_the
of the material of the ring. Therefore, the moment offinertia the
ring about an axis passing through the centre, O, ofQthe disc and
perpendicular to its plane is

dl = (2mxdx tep)x> = (27Tt p)x dx

. moment of inertia of the disc abou
to its plane is

ssing through its centre and perpendicular

R

_ 3 _ R_l(z)z
I = 2ntp )x“dx = (2 2nttp — = —|nR“tp)R
[ (2ntp) (‘% P g \TRP
0 0
:EMR2
2

of inertia of a solid cylinder about its axis is also %MRZ.

2
nertia of a thin walled hollow sphere about its diameter:

Similarly, mome

ertia of a thin walled hollow sphere about its centre is 1o = MRZ.

dicular axes theorem for three dimensional bodies, 21¢g = Ix + 1y + 1.

Ix =1y =1z = Moment of inertia, |, of the hollow sphere about its diameter.
= 21, = 2MR2
3 3

(e) Moment of inertia of a solid sphere about its centre:

Let the solid sphere of mass M be of radius R. Consider a thin spherical shell of radius x

and of thickness dx. The mass of this shell is 47 x* - dx p, where p is the density of the
material of the sphere. Hence the moment of inertia of the shell about the centre O is
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dlg = 4nx2-dxp-x2

Therefore, the moment of inertia of the solid sphere about its
centre is

R x> R 4
Io=4npj‘x4dx = 47np [?} = %PRs
0 0 W
2
= 2ar3p. 3R o 3yr2 1.\
3 5 5
(f) Moment of inertia of a solid sphere about its diame@
The moments of inertia of the solid sphere about three y perpendicular axes passing
through its centre given by I |y and 1; are aII d represent the moment of
inertia, I, of the solid sphere about the diameter.
| = IX = I = Iz
By theorem of perpendicular axes in three diggéensi 2lg = Ix + 1y + 1z = 3I
|:E|0:EXEMR2
3 3 5
(g) Moment of inertia of ' ne about its geometric axis:

Consider a disc of radius r{lan kness dy at a height y

from the vertex of the c

_—
Mass of disc = dm = density = nre dy - p.

4 pdy

2
r = Ey
h

]h
0

2hp} R2

- 3 MRZ2
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Moment of inertia and radius of gyration for some symmetric bodies

Body Axis | K
Passing through its centre and 1 e L
Thin rod of length L perpendicular to its length 1 23
2 | Ring of radius R — | Passing through its centre and
perpendicular to its plane
_ _ MR R
Thin-walled hollow cylinder of radius R— | Geometric axis
3 | Ring of radius R — | Any diameter
Circular disc of radius R — | Passing through its céntre @nd 1 2 R
perpendicular to its p EMR E
Solid cylinder of radius R — | Geometric axi A g
1MR2 R
4 | Circular disc of radius R — | Any diagfteter 4 2
. . 2uR2 | |2
5 | Thin-walled hollow sphere of radius R —» | Any didme 3 3 R
2 a2 2
6 | Solid sphere of radius R y eter EMR 5 R
o _ _ o SR2 | [8
7 | Solid right circular cone of radiu eometric axis 10 ER
7.8 Comparison of transla ion_and rotational motion
_)
1 | Linear displacemen Angular displacement 0
- -
2 | Linear velocity v Angular velocity ®
L 2 - -
Linear .ac n ;’ _ dv Angular acceleration Z dw
dt dt
m Moment of inertia I
- - - -
inear momentum p = my Angular momentum L I o
- - - -
Force F =m a Torque T I o
- -
7 | Newton's Second Law of I_:) _ dp Result similar to ’_C) dL
motion t Newton’'s Second Law t
8 | Translational Kinetic B 2 Rotational kinetic 1. 9
energy K = 5 mv energy K 5 l o
- -
w
9 | Work W= F-d Work T
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10 | Power P = Fv Power
Vv = vg + at
11 | Equations of linear 1 5 Equations of
motion  with  constant | d = vot + Eat rotational motion with
linear acceleration 5 > | constant angular
2ad = v - Vo' | gcceleration

7.11 Rigid (solid) bodies rolling without sliding

Let a body of mass m, radius R, moment of N
inertia | and radius of gyration K start rolling i
from rest without sliding from the top of a
plane of height h inclined at an angle 6 as
shown in the figure.

The body performs combined translational an :
rotational motion achieving linear velocity v

angular velocity ® at the bottom of the in& g EDSB
plane.

ife
Now, the P.E. lost by the body = wh

g is acceleration due to gravity

and the K. E. gained by the ho ; v2 o+ %Iw2

By the law of conser@ mechanical energy,
1 2 1
mgh = =mv© + =| 1
g 5 > (1)

Putting

ant I = mK? in the equation (1) above, we get

2
\Y

(2)

js the length of the inclined plane and a is the acceleration of the body along it, then

v2 = 2ad = 2'ah (3)
sin®
Comparing equations (2) and (3), a = gsin@
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the decrease in the acceleration of the body due to the frictional force acting on it

. 2
= gsin® - _gsin® gsine[K—J

K2 K2 + R?
1+—2
R

the frictional force,

K2
F = mgsing| — .. (4)
K2 + R?

The normal reaction N and mgcos©® balance each other.

\ 2
S N = mgcosé e (B)
Dividing equation (4) by equation (5), O
2
L . tan 6 ®
N K2 + R?

But E < us (co-efficient of static €hicti

( Note: Frictional force, F,
increased till it reach
For all values of

as the angle of inclination, 0, of the inclined plane is
mum value = ugsN at a certain maximum value of 6.
n this maximum value, F < psN.)

K2
———5 a8 < us
K< + L 2

J tan® for body to roll without sliding.

thin ring or thin-walled hollow cylinder, radius of gyration, K =R = pus 2 %tan 0
. . . . . . R 1
For circular disc or solid cylinder, radius of gyration, K = T = Hs 2 Etane
2
. . . 2 2
and for solid sphere, radius of gyration, K = \/;R = us = 7tane






