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Introduction 
 
In  this  chapter,  rotational  motion  of  a  rigid  body  about  a  fixed  axis  of  rotation  is  discussed.  
A  rigid  body  is  a  system  of  particles  in  which  interparticle  distances  do  not  change  and  the  
body  cannot  be  deformed  no  matter  how  large  a  force  is  applied  to  it.  Although  a  solid  body  
is  not  a  rigid  body,  it  can  be  so  considered  for  most  of  the  practical  applications. 
 
7.1  Rotational  Kinematics  and  Dynamics 
 
In  rotational  motion  of  a  body,  all  its  particles  move  on  circular  paths  having  centres  on  a  
definite  straight  line,  called  the  axis  of  rotation.  Kinematics  deals  with  motion  without  
considering  its  cause,  whereas  dynamics  deals  with  motion  alongwith  its  cause  and  properties  
of  the  body. 
 
7.2  Relations  between  variables  of  rotational  and  linear  motion 
 
( a )  Angular  displacement: 
 
The  figure  shows  a  rigid  body  rotating  about  a  fixed  
axis  OZ  normal  to  the  plane  of  the  figure.  P  and  P’  are  
the  positions  of  a  particle  of  the  body  at  time  t  and   
t  +  ∆t.  Angle  θ  made  by  the  line  joining  the  particle  to  
the  centre  of  its  rotation  with  a  reference  line  OX 
shows  its  angular  position  at  time  t.  Similarly,  angle  
θ  +  ∆θ  is  its  angular  position  at  time  t  +  ∆t.   
 
The  change  in  angular  position,  of  a  particle  is  called  
its  angular  displacement.  The  angular  displacement  of  
the  particle  P  is  ∆θ  in  time  ∆t. 
 
As  the  interparticle  distances  do  not  change  in  a  rigid  body,  all  its  particles  will have  the  
same  angular  displacement  in  a  given  time.  Hence,  the  angular  displacement,  ∆θ,  of  the  
particle  P  can  be  considered  as  the  angular  displacement  of  the  rigid  body. 
 
( b )  Angular  speed  and  angular  velocity: 
 
The  average  angular  speed  of  a  particle  or  of  the  rigid  body  is  defined  as 
 

< ω >   =   
interval  time

ntdisplaceme  angular    =   
t ∆

 ∆ θ  

 
The  instantaneous  angular  speed  of  a  particle  or  of  the  rigid  body  is  given  by 
 

ω   =   
t ∆
θ ∆  lim

0 t  ∆ →
          The  unit  of   ω   is  radian / s   or   rotation / s.    

 
The  direction  of  angular  velocity  is  given  by  the  right  handed  screw  rule.  When  a  right  
handed  screw  is  kept  parallel  to  the  axis  of  rotation  and  rotated  in  the  direction  of  rotation  
of  the  body,  the  direction  of  advancement  of  screw  gives  the  direction  of  angular  velocity.   
 
( c )  Scalar  relation  between  angular  velocity  and  linear  velocity: 
 
As  shown  in  the  figure,  the  particle   P  covers  a  linear  distance  equal  to  the  arc  length   PP’    
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in  time   ∆ t.  Hence,  average  linear  speed, 
 

< v >   =   
t ∆

'PP  length  arc    =   
t ∆
θ∆ r    =   r  < ω >,     where  r  is  the  radius  of  the  circular  path. 

 
The  instantaneous  linear  speed  is  given  by 
 

v   =   
t ∆
θ∆ r  lim

0 t  ∆ →
   =   

t d
θd r    =   r ω 

 
( Note  that  the  angular  velocity  of  all  particles  of  the  rigid  body  rotating  about  a  fixed  axis  of 
  rotation  is  the  same  for  all  the  particles,  whereas   the  linear  speed  of  a  particle  depends 
  upon  its  distance  ( r )  from  the  axis  of  rotation. ) 
 
Linear  velocity  is  a  vector  quantity  and  its  direction  at  any  point  on  the  path  of  motion  is  
tangential  to  the  path  at  that  point.  In  the  above  equation,   v,  r  and  ω  are  the  magnitudes  of  

the  vector  quantities   
→→→
ω   and   r   ,v . 

 
Vector  product  of  two  vectors: 

The  vector  product,  also  known  as  cross  product,  of  two  vectors   
→→
B  and  A   having  an  angle  

θ   between  them  is  defined  as 
→→

× B    A    =   l 
→
A l l 

→
B l  sin θ  

^
n ,    

where   
^
n    is  the  unit  vector  normal  to  the  plane  containing  

→→
B  and  A   having  direction  given  

by  the  right  handed  screw  rule.  When  a  right  handed  screw  kept  perpendicular  to  the  plane  

containing   
→→
B  and  A   is  rotated   from  

→→
B  towards  A ,   the  direction  of  advancement  of  screw  

gives  the  direction  of  
^
n . 

 
Properties  of  vector  product  of  two  vectors: 
 

( 1 )   
→→

× B    A    =   -  
→→

× A    B  
 

( 2 )   ) C    B (    A
→→→

+×    =   
→→

× B    A    +    
→→

× C  A  
 
( 3 )   The  cross  product  of  two  parallel    vectors,  in  the  same  or  opposite  directions,  is  a  zero   
          vector. 
 

( 4 )   If   
→→

⊥ B    A ,   then   
→→

× B    A    =   AB 
^
n        (  Q   sin 90°  =  1 ) 

 

( 5 )   
^
i    

^
i ×   =  

^
j    

^
j ×   =  

^
k    

^
k ×   =  0          and          

^
k    

^
j    

^
i =× ,          

^
i    

^
k    

^
j =× ,          

^
j    

^
i    

^
k =×  

 

( 6 )    If     
^
k zB      

^
j yB      

^
i xB      B     and     

^
k z   A   

^
j y   A   

^
i x   A   A ++=

→
++=

→
,   then 

          
→→

× B    A   =   
^
k ) xB yA  yB x A(      

^
j ) zB x  A  xB z A(      

^
i) yB zA   zB yA (   --  - ++  
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zyx

zyx

^^ ̂

B     B     B 
    A     A A

   k       j       i  
      B    A   =×

→→
∴  

 
( d )  Vector  relation  between  angular  velocity  and  linear  velocity: 
 

The  position  vector   
→
r   w. r. t.  the  centre  of  the  circular   

path  of  a  particle,  angular  velocity   
→
ω   and  linear  velocity  

→
v   

are  shown  in  the  figure.  As  
→
v   is  perpendicular  to  the  plane  

formed  by  
→
ω   and  

→
r ,  the  scalar  relation   v  =  r ω  can  be  

written  in  the  vector  form  as 
→
v    =    

→
ω   ×  

→
r  

 
( e )  Angular  acceleration: 
 
The  average  angular  acceleration  in  the  time  interval   ∆ t   is 

><
→
α       =    

interval  time
velocity  angular  in  change    =   

t ∆
 ∆
→
ω  

 
and  the  instantaneous  angular  acceleration  at  time  t  is  given  by 
 

→
α    =   

t ∆
 ∆  lim

0 t  ∆

→

→

ω    =   
t d

 d 
→
ω    =   rate  of  change  of  angular  velocity. 

 
→
α   is  in  the  direction  of  

→
ω ∆   and  in  the  case  of  fixed  axis  of  rotation,  both  are  parallel  to  

the  axis.  The  unit  of   α   is   rad / s 2   or  rotation / s 2. 
 
( f )  Relation  between  linear  acceleration  and  angular  acceleration : 
 

Differentiating  the  equation    
→
v    =    

→
ω   ×  

→
r    with  respect  to  time  gives  the  linear  

acceleration 

→
a    =   

dt
vd
→

   =   
dt
d  (

→
ω   ×  

→
r )   =   

→
ω   ×  

dt
rd
→

   +    
dt

d
→
ω   ×  

→
r     

       =   (
→
ω  × 

→
v )  +  (

→
α  × 

→
r )   

 
From  the  figure  on  the  previous  page  and  using  right  handed  screw  rule  it  can  be  found  that  

the  direction  of   
→
ω  × 

→
v   is  radial  towards  the  centre.  Hence,  it  is  called  the  radial  component,   

→
ra ,   of  the  linear  acceleration   

→
a . 
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Similarly,  the  direction  of   
→
α  × 

→
r    is  tangential  to  the  circular  path  at  the  position  of  the  

particle.   Hence  it  is  called  the  tangential  component,   
→
Ta ,   of  the  linear  acceleration   

→
a . 

 

∴   
→
a    =   

→
ra   +  

→
Ta           ∴   a   =   2

T
2

r a    a +      ( 
→

⊥
→

Tr a    a       Q ) 

Even  if   α  =  0,   that  is  the  angular  velocity  is  constant,   
→
ra   is  not  zero.  As  the  angular  

displacement,   θ,   angular  velocity,   
→
ω    and  angular  acceleration,   

→
α   are  the  same  for  all  the  

particles  of  a  rigid  body,  they  are  known  as  variables  of  the  rotational  kinematics. 
 
7.4  Torque 
 
Torque  is  a  physical  quantity  of  rotational  dynamics  whose  
role  in  rotational  motion  is  similar  to  the  role  of  force  in  
translational  motion. 
 
( a )  Torque  acting  on  a  particle: 

Consider  a  particle   P   having  position  vector   
→
r   w .r. t.  the  

origin  O  of  a  co-ordinate  system  on  which  a  force   
→
F   acts  

as  shown  in  the  figure.   The  angle  between  
→
r  and  

→
F   is   θ. 

 

The  torque   
→
τ     acting  on  the  particle  w. r. t.   point  O  is  

defined  as 
 
→
τ    =   

→→
× F    r           

∴   τ    =   r F sin θ   =   F ( r sin θ )   =   F ( OQ ) 
              =   ( F ) ( Perpendicular  distance  of  the  line  of  action  of  force  from  O ) 
              =   Moment  of  force  w. r. t.  point  O 
 
Thus,  torque  is  the  moment  of  force  w. r. t.  an  arbitrarily  selected  reference  point. 
→
τ    is  a  vector  quantity.  Its  dimensional  formula  is   M1  L2 T - 2   and  its  unit  is  Nm. 

The  direction  of  
→
τ   is  perpendicular  to  the  plane  formed  by   

→→
F  nda  r  and  is  obtained 

using  the  right  handed  screw  rule.  The  magnitude  and  direction  of  torque  depends  on  the  
selection  of  the  reference  point  and  hence    it  is  necessary  to  mention  the  reference  point 
while  defining  the  torque  of  a  particle. 
 
( b )  Torque  acting  on  a  system  of  particles: 
 
As  the  internal  forces  between  the  particles  of  a  system  are  equal  in  magnitude  and  opposite  
in  direction,  the  resultant  torque  due  to  them  is  zero.  The  resultant  torque  acting  on  the  
system  is  the  vector  sum  of  torques  acting  on  its  particles  having  position  vectors,  

→→→
n21 r  ,  ...  ,r   ,r   due  to  external  forces,   

→→→
n21 F  ,  ...  ,F   ,F   respectively. 

∴   
→
τ     =    

→→
× 11 F    r    +   

→→
× 22 F    r    +   …   +   

→→
× nn F    r     =    

→
τ1    +   

→
τ2    +   …   +   

→
τn  
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( c )  Torque  acting  on  a  rigid  body: 
 
The  figure  shows  a  rigid  body  rotating  about  a  fixed  axis  

OZ.   
→→→
n21 F  ,  ...  ,F   ,F   are  the  forces  acting  on  its  particles  

with  position  vectors  
→→→
n21 r  ,  ...  ,r   ,r   respectively. 

 

The  torque,   
→
τ ,   acting  on  the  rigid  body  is  the  vector  

sum  of  torques  acting  on  its  particles. 
 

∴   
→
τ    =   ∑ τ

→

n
n    =   

→→
×∑ nn

n
F    r   

              

               =   ∑
n nznynx

nnn

^^^

 F    F    F  
z           yx  

  k         j        i   
    

               =   ∑
n

 [ ynFnz  -  znFny ] 
^
i    +   [ znFnx  -  xnFnz ] 

^
j    +   [  xnFny  -  ynFnx ] 

^
k     

Here,  as  the  rotation  is  considered  about  z-axis,  only  the  z-component  of  torque  is  

responsible  for  the  rotation. In  general,  if  rotation  is  about  a  fixed  axis  with   
^
n    as  the  unit  

vector  on  it,  the  component  of  torque  responsible  for  rotational  motion  is   
→
τ  ⋅ 

^
n . 

 
 
( d )  Physical  explanation  of  the  definition  of  torque: 
 

Suppose  a  force  
→
F   acts  on  a particle  P  of  a  

rigid  body,  having  position  vector  
→
r   w. r. t.  O,  

and  the  body   rotates  about  a  fixed  axis  passing  
through  O  and  perpendicular  to  the  plane  of  the  

figure.  The  angle  between  
→
F   and  

→
r   is  θ.  The  

component  of  force,  
→
F cos θ,  parallel  to  

→
r   is  

ineffective  in  producing  rotational  motion.  The  component,  
→
F sin θ,  produces  the  rotational  

motion  about  the  axis  through O.   
 

More  effective  will  be  the  rotational  motion,  larger  the  value  of   l 
→
F l,  l 

→
r l   and / or  sin θ.  

Thus,  the  effectiveness  of  rotational  motion  depends  on  rFsin θ  which  is  known  as  torque.  

Vectorially,   Torque,   
→
τ    =   

→
r   ×  

→
F  
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Thus,  torque  is  the  measure  of  effectiveness  of  force  in  producing  rotational  motion. 
 
( e )  Couple: 
 
“Two  non-collinear  forces,  equal  in  magnitude  and  opposite  
in  direction,  constitute  a  couple.  The  figure  shows  forces,  
→
1F   and   

→
2F ,  acting  at  points  P  and  Q  of  a  rigid  body  

having  position  vectors,  
→
1r   and  

→
2r ,  respectively  w. r. t.  to  O.  

These  forces  are  equal  in  magnitude  and  hence  constitute  a  
couple.  Here, 
 
→
τ    =   

→→
× 11 F    r    +   

→→
× 22 F    r     

        =   
→→

× 11 F    r    -   
→→

× 12 F    r           [ Q 
→
2F  =  -  

→
1F  ] 

        =   (  
→
1r    -  

→
2r )  ×  

→
1F    =   l 

→
1r    -  

→
2r l  ( F1 )  sin ( π  -  θ ) 

        =   l 
→
1r    -  

→
2r l  F1 sin θ,   where   π  -  θ   is  the  angle  between   

→
1r    -  

→
2r   and  

→
1F . 

 
∴   Moment  of  a  couple   =   Magnitude  of  force  constituting  couple  ×  perpendicular  distance   
                                                    between  the  two  forces. 
 
( f )  Equilibrium  of  a  rigid  body: 
 

If   
→→→
n21 F  ,  ...  ,F   ,F   are  the  forces  acting  on  a  rigid  body  and   

→
τ1    +   

→
τ2    +   …   +   

→
τn   are  

the  torques  on  it  due  to  these  forces,  then 
 
( i )   for  translational  equilibrium,    ∑

n
ixF   =   ∑

n
iyF  =  ∑

n
izF   =  0   and 

( ii )  for  rotational  equilibrium,        
→
τ    =   ∑ τ

→

n
n   =  0 

 
7.5  Angular  momentum 
 
( a )  Angular  momentum  of  a  particle: 
 

Consider  a  particle  Q  of  mass  m  having  position  vector  
→

OQ   

=  
→
r   moving  with  velocity  

→
v   and  having  linear  momentum   

→
p  =  m

→
v .  The  angle  between  

→
r   and  

→
p   is  θ.  The  

coordinate  axes  are  so  chosen  that  the  particle  and  its  
motion  are  in  ( x,  y )  plane. 
     
The  angular  momentum  of  the  particle  w. r. t.  point  O  is  
defined  as 
→
l   =   

→→
× p    r   =  r p sin θ  =  p ( OR ) 
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        =   p  ×  ( perpendicular  distance  of  linear  momentum 
                       vector  from  the  reference  point ) 
       =   Moment  of  linear  momentum 
 
The  unit  of  angular  momentum  is  kg m2 / s   or   Js. 
Its  dimensional  formula  is   M1 L2 T - 1. 

The  direction  of  
→
l   is  perpendicular  to  the  plane  formed  by   

→→
p  nda  r  and  is  obtained  using  

the  right  handed  screw  rule.  In  the  present  case,  
→
l   is  in  the  OZ  direction.   

The  magnitude  and  direction  of   
→
l   depend  on  the  selection  of  reference  point  and  hence  

while  defining  the  angular  momentum  of  a  particle  it  is  necessary  to  mention  the  reference  
point. 
 
( b )  The  relation  between  angular  momentum  of  a  particle   
         and  torque  acting  on  it: 
 

Differentiating  equation   
→
l   =   

→→
× p    r   w. r. t.  to  time,    

                                      
dt

d
→
l    =   
















×
















×

→
→→

→
+ p      

dt
rd      

dt
pd      r  

But   
dt
pd
→

   =   rate  of  change  of  linear  momentum  =  force  
→
F      and     

dt
rd
→

   =    velocity   
→
v  

∴   
dt

d
→
l    =   ) p      v (     ) F      r (

→→→→
×× +  

∴   
dt

d
→
l    =   ) F      r (

→→
×    =   

→
τ      (  As   

→
v    and   

→
p    are  in  the  same  direction,   

→→
× p      v    =   0 ) 

 
Thus,   “the  time  rate  of  change  of  angular  momentum  is  equal  to  the  torque.”  This  statement  
is  similar  to  the  Newton’s  Second  Law  of  motion  that  “the  time  rate  of  change  of  linear  
momentum   is  equal  to  the  force.” 
 
( c )  Angular  momentum  of  a  system  of  particles: 
 

The  angular  momentum  of  a  system  of   n   particles  having  angular  momenta  
→→→
n21    , ... ,   , lll   is  

given  by        
→
L    =   

→→→
+++ n21      ...          lll     

             ∴   
dt
Ld
→

   =   
dt
 d     ...      

dt
 d      

dt
 d n21

→→→

+++
lll     

                               =   
→
τ1    +   

→
τ2    +   …   +   

→
τn    

                               =   
→
τ  

Thus,  the  time  rate  of  change  of  total  angular  momentum  of  a  system  of  particles  is  equal  to  
the  resultant  external  torque  acting  on  the  system. 
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( d )  Angular  momentum  of  a  rigid  body: 
 
All  particles  of  a  rigid  body  move  on  circular  paths  in  a plane  perpendicular  to  the  axis  of  
rotation  and  hence  their  linear  momenta  are  in  this  plane  only.  Taking  position  vector  of  each  
particle  w. r. t.  the  centre  of  its  circular  path,  its  angular  momentum  will  be  parallel  to  the  

axis  of  rotation.  Also,  for  each  particle,   
→→
p   and   r   are  perpendicular  to  each  other. 

 

∴     
→
L    =   

→→→
+++ n21      ...          lll    =    )p      r (   ...   ) p      r (    ) p      r ( nn2211

→→→→→→
×++×+×  

∴   l
→
L l   =    ) parallel  are  S. H. R.  on  vectors  all   and   p    r    (    p r      ...      p r      p r nn2211

→→
⊥+++ Q  

                 
                 =   ) mv    p    (       v m r     ...      v m r      v m r nnn222111 =+++ Q  
                  
                 =   )r    v  (       r m   ...    r m       r m    2

nn
2

22
2

11 ωωωω =   ++   + Q  
 
                 =   ω   ++   +   ) r m   ...    r m       r m ( 2

nn
2

22
2

11  

∴   l
→
L l   =    I   l

→
ω l,     where   I   =    r m   ...    r m       r m 2

nn
2

22
2

11    ++   +  
 
I   is  called  the  moment  of  inertia  of  the  rigid  body  about  the  given  axis  of  rotation.    

As   
→
L   and    

→
ω    are  parallel  to  the  axis  of  rotation,   

→
L    =   I  

→
ω . 

 

∴   
dt
Ld
→

   =   I  
dt

d
→
ω    =   I   

→
α    =   

→
τ  

 
Law  of  conservation  of  angular  momentum: 
 

In  the  above  equation,   if   
→
τ   =  0,   

→
L   =  constant.   Hence,  “In  the  absence  of  resultant  

external  torque,  the  angular  momentum  of  a  rigid  body  remains  constant.”  This  statement  is  
known  as  the  law  of  conservation  of  angular  momentum. 
 
7.6  Geometrical  representation  of  the law 
       of  conservation  of  angular  momentum 
 
Planet   P   having  mass  m  moves  in  an  elliptical  

orbit  around  the  Sun  with  linear  velocity   
→
v   as  

shown  in  the  figure.  The  perpendicular  distance  of   
→
v   from  the  Sun  is   d. 

 
∴   the  angular  momentum  of  the  planet  w. r. t.   
        the  Sun  is 
 
L   =   mvd   …   …   …   …   …   …   …   ( 1 ) 
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Area  of  the  triangle   SQP   is    A   =   
2
1  ( SQ ) ( PQ )   =   

2
1  ( d ) s         (  Q  PQ  =  s ) 

 

∴   
dt
dA    =   

2
1  ( d )  

dt
ds    =   

2
1  ( d ) v   …   …   …   …   ( 2 ) 

 
From  equations   ( 1 )   and   ( 2 ),  we  get 
 

dt
dA    =   

m 2
L   =   constant     (  Q  torque  due  to  gravitational  force  on  P  by  the  Sun  w. r. t.  the 

                                                           Sun  is  zero  and  so  L  is  constant. ) 
 
This  equation  represents  Kepler’s  second  law  for  planetary  motion  stated  as  “The  area  swept  
by  the  line  joining  a  planet  with  the  Sun  per  unit  time,  called  areal  velocity,  is  constant.”  
This  is  the  geometrical  representation  of  the  law  of  conservation  of  angular  momentum. 
 
7.7  Moment  of  inertia 
 
If   n21 m   ...,   ,m   ,m   are  the  masses  of  the  particles  of  a  rigid  body   and   n21 r   ...,   ,r   ,r   are  
their  perpendicular  distances  from  a  given  axis  respectively,  then  the  moment  of  inertia  of  the  
body  corresponding  to  the  given  axis  is  given  by 
 

I    =  2
nn

2
22

2
11 r m      ...     r m     r m +++    =    2

i
n

1  i
i r m ∑

=
 

 
The  magnitude  of  moment  of  inertia  depends  on  the  selection  of  the  axis  and  the  distribution  
of  mass  about  it.  Its   S I   unit  is   kg m2   and  dimensional  formula  is   M 1 L 2 T 0. 
 

The  equations   
→
L  =  I 

→
ω    and   

→
τ  =   I 

→
α    are  analogous  to  the  equations  of  linear  motion   

→
P   =  M 

→
v    and   

→
F   =  M 

→
a    respectively   which  shows  that  the  moment  of  inertia  plays  the  

same  role  in  rotational  motion  as  the  mass  plays  in  linear  motion.  The  moment  of  inertia  is  
the  inertia  for  rotational  motion  just  as  the  mass  is  the  inertia  for  linear  motion. 
 
7.8  ( a )  Radius  of  gyration 
 
Suppose  the  rigid  body  of  mass   M   consists  of   n   particles  each  of  
mass   m.     ∴   M  =  mn.  
 
The  moment  of  inertia  of  the  body  about  a  given  axis, 
 

I    =     r m      ...     r m     r m 2
n

2
2

2
1 +++ =  ( )

n
 r      ...    r     r  M 2

n
2

2
2

1 +++    =   M K 2 

 
where,    K   is  called  the  radius  of  gyration  corresponding  to  the  given  
axis  and  is  the  mean  of  the  squares  of  perpendicular  distances  of  the  
particles  of  the  body  from  the  given  axis. 
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7.8  ( b )  Two  theorems  regarding  moment  of  inertia   
 
( i )  Parallel  axes  theorem:     The  moment  of  inertia   ( I )    
                                                               of  a  body  about  a  given  
axis  is  equal  to  the  sum  of  its  moment  of  inertia   I c   about  
a  parallel  axis  passing  through  its  centre  of  mass  and  the  
product  of  its  mass  and  square  of  perpendicular  distance   
( d )   between  the  two  axes. 
 
I   =   I c   +   M d 2        
 
( ii )  Perpendicular  axes  theorem: 
 
( a )  For  laminar  bodies:     For  laminar  bodies,  the 
                                                 moment  of  inertia    I z 
          about  Z-axis  normal  to  its  plane  is  equal  to  the  
         sum  of  its  moments  of  inertia  about  X-axis,   
         I x   and   Y-axis,   I y. 
 
        I z   =   I x   +   I y 
 
( b )  For  three-dimensional  bodies:    The  sum  of 
        moments  of  inertia  of  a  three  dimensional  body 
        about  any  three  mutually  perpendicular   axes 
        drawn  through  the  same  point  is  equal   to  twice   
        the  moment  of  inertia  of  the  body  about  that   
        point. 
 
        I x   +   I y    +   I z   =   2 I 0 
 
7.9  Calculation  of  moment  of  inertia  of  certain  symmetric  objects 
 
( a )  Moment  of  inertia  of  a  thin  uniform  rod  about  an  axis,   
         passing  through  its  centre  and  perpendicular  to  its  length: 
 
To  calculate  moment  of  inertia  of  a  thin  rod  of  length  l  and  mass  M  about  an  axis  yy’  
passing  through  its  centre  O  and  perpendicular  to  its  length,  consider  O  as  origin  and  X-axis  
along  the  length  of  the  rod.  A  small  element  of  length  dx  of  the  rod  is  at  a  distance  x  from  
O. 
 
The  moment  of  inertia  of  this  element  about   yy’  is 
 

d I   =   2x dx M  ⋅
l

     ∴   moment  of  inertia  of  the  rod,  

I    =     2

2

x dx M2
 

   ⋅∫
+

l

l

l -

         =     
2

 

2

3

3
x M

l

ll

+













 -
      

    =     











+  

8
      

8
  

 3
M 33 ll

l
    =   

12
 M 2l  
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( b )  Moment  of  inertia  of  a  thin  ring  or  a  thin  walled  hollow  cylinder  or  
         a  thin  walled  hollow   sphere: 
 
As  the  entire  mass,   M,    of  a  thin  ring  is  at  the  same  distance,  equal  to  the  radius   R   of  the  
ring  from  its  centre,  the  moment  of  inertia  of  a  thin  ring  about  an  axis  passing  through  its  
centre  and  perpendicular  to  its  plane  is   MR2.  Similarly,  the  moments  of  inertia  of  a  thin  
walled  cylinder  about  its  geometric  axis  or  of  a  thin  walled  hollow  sphere  about  its  centre  
are  also   given  by  MR2,  where  M  represents  their  mass  and  R  their  radii. 
 
( c )  Moment  of  inertia  of  a  disc  or  a  solid  cylinder:   
 
To  calculate  moment  of  inertia   of  a  disc  of  uniform  thickness   t,   
radius  R  and  mass  M  about  an  axis  passing  through  its  centre  and  
perpendicular  to  its  plane,  consider  an  element  of  the  disc  in  the  
form  of  a  thin  ring  of  thickness   dx   at  a  distance   x   from  its  
centre.  Mass  of  this  ring  is   2 π x dx ⋅ t ⋅ ρ,  where   ρ   is  the  density  
of  the  material  of  the  ring.  Therefore,  the  moment  of  inertia  of  the  
ring  about  an  axis  passing  through  the  centre,   O,   of  the  disc  and  
perpendicular  to  its  plane  is 
 
d I   =  ( 2 π x dx ⋅ t ⋅ ρ ) x2    =    (  2 π  t  ρ ) x3 dx 
 
∴  moment  of  inertia  of  the  disc  about  an  axis  passing  through  its  centre  and  perpendicular  
      to  its  plane  is 
 

Ι   =  ∫   π
R

0

3 dx x ) ρt  2 (     =   (  2 π  t  ρ ) 
R

0

4

4
x 












       =   2 π  t  ρ  

4
R 4

   =   ( ) 22 R  ρt  R   
2
1

 π  

 

    =  2R M  
2
1  

Similarly,  moment  of  inertia  of  a  solid  cylinder  about  its  axis  is  also   2R M  
2
1 . 

 
( d )  Moment  of  inertia  of  a  thin  walled  hollow  sphere  about  its  diameter: 
 
Moment  of  inertia  of  a  thin  walled  hollow  sphere  about  its  centre  is   I 0   =  MR2. 
 
By  perpendicular  axes  theorem  for  three  dimensional  bodies,   2 I 0   =   I x   +  I y   +  I z . 
 
Now,   I x   =  I y   =  I z  =  Moment  of  inertia,    I ,   of  the  hollow  sphere  about  its  diameter. 
 

∴   I   =   
3
2  I 0   =   

3
2  MR2. 

 
( e )  Moment  of  inertia  of  a  solid  sphere  about  its  centre: 
 
Let  the  solid  sphere  of  mass  M  be  of  radius  R.  Consider  a  thin  spherical  shell  of  radius   x   
and  of  thickness   dx.  The  mass  of  this  shell  is   4 π x2 ⋅ dx ρ,   where  ρ   is  the  density  of  the  
material  of  the  sphere.  Hence  the  moment  of  inertia  of  the  shell  about  the  centre  O  is 
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d I0   =   4 π x2 ⋅ dx ρ ⋅ x2 
 
Therefore,  the  moment  of  inertia  of  the  solid  sphere  about  its  
centre  is 
 

I0   =   4 π ρ dx x 
R

0

4∫       =   4 π ρ  
R

0

5
 

5
x 












   =   5R 

5
ρ 4  π    

    =   ρ R 
3
4 3 π ⋅ 

5
R 3 2

   =   2MR 
5
3  

 
( f )  Moment  of  inertia  of  a  solid  sphere  about  its  diameter: 
 
The  moments  of  inertia  of  the  solid  sphere  about  three  mutually  perpendicular  axes  passing  
through  its  centre  given  by    I x,   I y   and    I z   are  all  equal  and  represent  the  moment  of  
inertia,   I,   of  the  solid  sphere  about  the  diameter. 
 
∴    I    =   I x   =   I y   =   I z 
 
By  theorem  of  perpendicular  axes  in  three dimensions,    2 I0   =   I x   +   I y   +   I z   =   3 I 
 

∴    I   =   
3
2  I0   =   

3
2   ×  2MR 

5
3    =   2MR 

5
 2  

 
( g )  Moment  of  inertia  of  a  solid  cone  about  its  geometric  axis: 
 
Consider  a  disc  of  radius  r  and  thickness  dy  at  a  height  y  
from  the  vertex  of  the  cone. 
 
Mass of  disc  =  dm  =   volume  ×  density   =   π r2 dy ⋅ ρ. 
 

∴   M. I.   of  disc   =   d I   =   
2

r ) dm ( 2
  =   

2
 dy ρ r 4π  

From  the  geometry  of  the  figure,   
y
r   =  

h
R     ∴   r   =     y

h
R  

∴   d I   =   dy   y
h 2

ρ R 4
4

4π  

 

∴      I   =    dy y     
h 2

ρ R 4
h

0
4

4
∫

π  =   
h

0

5

4

4
 

5
y    

h 2
ρ R 











π     

 

             =   
5

h   
h 2

ρ R 5

4

4π             =   22 R  ρ h R 
3
1   

10
3





  π  

  

             =   2R M  
10
3  
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Moment  of  inertia  and  radius  of  gyration  for  some  symmetric  bodies 

 
 Body Axis I K 
 
1 

 
Thin  rod  of  length  L 

Passing  through  its  centre  and  
perpendicular  to  its  length 

2ML 
12
1

32
L  

2 Ring  of  radius  R                                        →   
 
 
Thin-walled  hollow  cylinder  of  radius R →  

Passing  through  its  centre  and  
perpendicular  to  its  plane 
 
Geometric  axis 

 
 

MR 2 

 
 

R 

3 Ring  of  radius  R                                        →  
 
Circular  disc  of  radius  R                         →  
 
 
Solid  cylinder  of  radius  R                       →  

Any  diameter 
 
Passing  through  its  centre  and  
perpendicular  to  its  plane 
 
Geometric  axis 

 
 

2MR 
2
1

 

 
 

2
R  

 
4 

 
Circular  disc   of  radius  R                        →  

 
Any  diameter 

2MR 
4
1

2
R  

 
5 

 
Thin-walled  hollow  sphere  of  radius  R →  

 
Any  diameter 

2MR 
3
2

R  
3
2

 
6 

 
Solid  sphere  of  radius  R                         →  

 
Any  diameter 

2MR 
5
2

R  
5
2

 
7 

 
Solid  right  circular  cone  of  radius  R    →  

 
Geometric  axis 

2R 
10
3  R 

10
3

 
7.8  Comparison  of  translational  motion  and  rotational  motion 
 
 

1 
 
Linear  displacement 

→
d  

 
Angular  displacement 

 
θ 

 
2 

 
Linear  velocity 

→
v  

 
Angular  velocity 

→
ω  

 
 

3 
 
Linear  acceleration →

a   =   
dt

vd
→

 
 
Angular  acceleration →

α    =   
dt

d
→
ω  

 
4 

 
Mass        

 
m 

 
Moment  of  inertia   

 
I 

 
5 

 
Linear  momentum 

→
p    =   m 

→
v  

 
Angular  momentum 

→
L    =   I  

→
ω  

 
6 

 
Force 

→
F    =   m  

→
a  

 
Torque 

→
τ    =   I  

→
α  

 
7 

 
Newton’s Second Law of 
motion 

→
F    =   

dt
Pd
→

 
 
Result  similar  to  
Newton’s  Second  Law 

→
τ    =   

dt
Ld
→

 

 
8 

 
Translational  kinetic  
energy 

 

K   =   2mv  
2
1  

 
Rotational  kinetic  
energy 

 

K   =   2   
2
1

ωI  

 
9 

 
Work W   =   

→
F  ⋅ 

→
d  

 
Work W   =   τ θ 
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10 

 
Power 

 
P   =   F v 

 
Power 

 
P   =    τ ω 

 
11 

 
Equations  of  linear  
motion  with  constant  
linear  acceleration 

v   =   v0   +   at 

d   =   v0t  +  2at 
2
1  

2ad   =   v2   -   v0
2 

 
Equations  of  
rotational  motion  with  
constant  angular  
acceleration 

ω   =   ω0   +   αt 

 θ   =   ω0 t   +   
2
1 αt 2 

2α θ   =   ω2  -  ω0
2 

 
 
7.11  Rigid  ( solid )  bodies  rolling  without  sliding 
 
Let  a  body  of  mass   m,   radius   R,   moment  of  
inertia   I  and  radius  of  gyration   K    start  rolling  
from  rest  without  sliding  from  the  top  of  a    
plane  of  height  h  inclined  at  an  angle  θ   as  
shown  in  the  figure. 
 
The  body  performs  combined  translational  and  
rotational  motion  achieving  linear  velocity   v   and  
angular  velocity   ω   at  the  bottom  of  the  inclined  
plane. 
 
Now,  the  P. E.  lost  by  the  body      =  mgh,   where 
 
g  is  acceleration  due  to  gravity    

and  the  K. E.  gained  by  the  body   =   22  
2
1    mv 

2
1

ω+  I  

 
By  the  law  of  conservation  of  mechanical  energy,     
 

mgh   =   22  
2
1    mv 

2
1

ω+  I    …     …     ( 1 ) 

Putting   ω   =   
R
v      and    Ι   =   m K 2   in  the  equation   ( 1 )   above,   we  get 

    v 2  =  














+

2

2

R
K    1

h g 2    …       …     …     ( 2 ) 

 
If   d   is  the  length  of  the  inclined  plane   and   a  is  the  acceleration  of  the  body  along  it,  then 
 

   v 2   =   2 a d    =   
θ sin
h a 2     …     …     ( 3 ) 

Comparing  equations   ( 2 )   and   ( 3 ),         a   =   














+

2

2

R
K    1

θ sin g  
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∴     the  decrease  in  the  acceleration  of  the  body   due  to  the  frictional  force  acting  on  it 
                                               

         =   g sin θ   -   














+

2

2

R
K    1

θ sin g      =     g sin θ 














+ 22

2

R    K
K  

∴   the  frictional  force, 
 

F   =   m g sin θ 














+ 22

2

R    K
K       …     ( 4 ) 

 
The  normal  reaction   N   and   m g cos θ   balance  each  other. 
 
∴   N   =   m g cos θ           …      …     ( 5 )    
 
Dividing  equation   ( 4 )   by   equation   ( 5 ), 
 

N
F    =   















+ 22

2

R    K
K  tan θ 

 

But   
N
F    ≤   µ s  ( co-efficient  of  static  friction ) 

 
( Note:   Frictional   force,   F,   increases  as  the  angle  of  inclination,   θ,  of  the  inclined  plane  is  

increased  till  it  reaches  a  maximum  value   =    µ s N   at  a  certain  maximum   value  of   θ.  
For  all  values  of   θ   less  than  this  maximum  value,   F   <   µ s N. ) 

                                                               
 

∴    














+ 22

2

R    K
K  tan θ     ≤   µ s   

 

or,    µ s    ≥   














+ 22

2

R    K
K  tan θ      for  body  to  roll  without  sliding. 

 
Special   cases: 
 

For  thin  ring  or  thin-walled  hollow  cylinder,   radius  of  gyration,  K  =  R     ⇒     µ s    ≥   
2
1  tan θ 

 

For   circular   disc   or   solid   cylinder,              radius  of  gyration,  K  =  
2

R   ⇒     µ s    ≥   
3
1  tan θ 

 

and   for   solid   sphere,                              radius   of   gyration,   K   =   R  
5
2    ⇒     µ s    ≥   

7
2  tan θ 
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