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Introduction

e The constituent particles of the matter like atoms, molecules or ions are in continuous
motion.

e In solids, the particles are very close and oscillate about their mean positiong®

e In gases, at low density, the particles are far away from each other an er random
motion in all directions. Also, the interactions among them are negligi

e In liquids, the particles are slightly more away than in solids and th on is less free
than in gases.

e Pressure, temperature, volume, internal energy associated as are known as
macroscopic physical quantities which are manifested n average combined effect of
the microscopic processes. 4

e Macroscopic quantities like, pressure, temperature,gvolum n be measured while internal
energy can be calculated from them. Description@of afsystem using these quantities is
known as macroscopic description.

e Macroscopic quantities and their interrel ns can be understood from the processes
occurring between the constituent partic at croscopic level, e.g., pressure of a gas
can be understood from the transf enta to the walls of the container by the
collisions of the molecules maki motion. Thus, description of the system in
relation to the speed, momentu inetic energy of its constituent particles is known
as microscopic description.

Kinetic theory of gases i
(_statistically ) to _the constfitue articles of the system (i.e., gas) and macroscopic
quantities are obtained” I ®emns of its microscopic _quantities with the help of a
mathematical sche

L9,

11.1 Laws of .deal

11

“At con
amou

perature, volume of a fixed
as, having sufficiently low density,
roportional to its pressure.”

( for fixed amount and fixed

temperature )

PV = constant

Figure shows P —V curves for some real gas
at three different temperatures obtained
experimentally ( shown by continuous lines )
and theoretically using Boyle’s law ( shown by
broken lines). From the graphs, it can be seen v —
that real gas follows Boyle’'s law at high Graph of PV

temperature and low pressure.
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Charles’ and Gay-Lussac’s law:

“At constant pressure, the volume of a given amount of gas, having low density, is
proportional to its absolute temperature.”

V o« T (for fixed amount and fixed pressure of gas) ¥ = constal

Equation of state for an ideal gas:

Combining Boyle’s and Charles’ laws, g = constant (for a giv mo f gas).

Also, the volume of gas is proportional to its amount at constant temperature and pressure.

2
= pR, or PV = pRT .. .. .. (1)

K1 =1986 cal(mol) ‘K1

A gas obeying the equation PV = pR
ideal gas. No real gas behaves as
high temperature and at low pressu
and obeys the above ideal gas law
the above equation, it is called

ressures and temperatures is known as an
gas under all the circumstances. However, at

. As the thermodynamic state can be fixed using
jon of state for an ideal gas.

Avogadro’s number:

“The number of consf t rticles (atoms or molecules ) contained in one mole of gas is
called Avogadro’s Nu (

The value of NAWis tme same in all elements and is equal to 6.023 x 1023 (mol)'l.

N molecules and Mg is the molecular weight of gas, then

PV = lRT = NiT = NkT ... ... .. (2)
A NA
R _ _ -23 -1,,-1 ,
Here, Ne k = 1.38 x 10 J (molecule)  ~ K (Boltzmann’s constant)

p=Nyr - kT e e (3)
Vv
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N . . . .
where n = Vi = number of molecules per unit volume of the container, which is also

called the number density of the molecules.

P .
n = — from equation (3
T [ q (3)1]
M
Now, PV = puRT = —RT
Mo
1
P = M-—RT = LRT .. (4), where p = lbny of gas
V Mg Mg
Equations (1), (2), (3) and (4) are different forms of the equation tate of an ideal gas.
: 4
Avogadro’s hypothesis: é
“At constant temperature and pressure, the number mojecules in gases having the same

volume is the same.”

11.2 Kinetic theory of gases

Macroscopic physical quantities of a ga e ssure, temperature, etc. can be understood

pic quantities. This is discussed in the kinetic

Molecular model of ideal

(1) A gas is made up of ic particles called molecules which may be monoatomic
or polyatomic. If o ement is present in a gas, all its molecules are same and
chemically stable.

(2) The molecules can be considered as perfectly rigid spheres or particles devoid
of internal @gtructu

(3)

are in continuous random motion colliding with each other and with the
ntainer.

lecules of a gas follow Newton’s laws of motion.

number of molecules in a gas is very large. This assumption justifies randomness
eir motion.

The total volume of all the molecules of a gas is negligible as compared to the volume
of the vessel containing the gas.

(7) Intermolecular forces act only when two molecules come close to each other or collide.

(8) The collision between the molecules and between the molecules and the wall of the
container are elastic. The impact time of collision is negligible as compared to the time
between successive collisions. Kinetic energy is conserved in an elastic collision. During
the impact time of collisions, kinetic energy before collision is momentarily converted
into potential energy but is again reconverted into the same amount of kinetic energy
after the collision. Hence kinetic energy of the gas can be considered to be its total
mechanical energy.
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11.3 Pressure of an ideal gas

Suppose an ideal gas is filled in a cubic
container having elastic walls having each
side of length, I.

2
area of each wall = |°.

Let N = number of molecules having
velocities
- 2> - -
Vi, V2, V3, ,.., vy at some
instant and
m = mass of each molecule.

v

Now consider opposite walls A1 and A
of the container perpendicular to X-axis.

_)
Let the molecule ‘1" have velocity vi1 with$i ponents, Vvy,, Vy; and vz along
X-axis, Y-axis and Z-axis respectively.

When this molecule collides elastic t wall Aj, its velocity along X-axis gets
reversed and becomes - Vx,- Buty. components of its velocity do not change.

The x-component of momentum{of lecule before collision is pj = MVyxq
The x-component of mo the molecule after collision is Pt = -mvy,
the change in m tugh 'of the molecule due to this collision is
Ap =‘-mvx1 SMVy, = - 2mvyg

conservation of momentum, the wall gains momentum 2mvy, in the
ve X-axis.

molecule returning after colliding with A, collides with the wall A, and without
ny other collision on its path, collides again with the wall Aj;. Between these two
ns with the wall Aj, it travels a distance 21 with velocity Vixq along X-axis.

. . - 21
time between two successive collisions, t =
. Vx1
number of collisions per second = TR
2
: Vx1 MVyxq
momentum gained by the wall per second = force, F1 = 2m Vxy X =

21 I
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total force on the wall due to all the N number of molecules

T s [2]
— i _m 2
F = Z | T Z Vxi
i=1 i=1
Force F m < 2
ressure on the wall, P = = — = — [v ]
P Area 12 13 izl Xi
) 7
_ mN i Vx;
1° . N
i=1 i
n 2 ]
mN Vx; 3 .
= — = lume of the container
v (Q N |

S0P = p< VX2> 0 (1)
where, mvN = p = densit ga

VX'
! the“squares of x-components of molecules.

n
and Z =< vX2> = averade
i=1 N

Now, as the number of molecul large and their motion is random,
<v2> = <Vx2> + 2o+ <v22> and <Vx2> :<vy2> =<v22>

2 1 2
< VT > = 3< vy and <vx>=§<v>

f QVX2> in equation (1),

p = % p < Vs e e (2)

The square root of mean speed of molecules, also known as mean molecular speed,

2 .
< v~ > s called root mean square speed, Vims -

From equation (2), vims = V< vZ> = 3P

P
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11.4 Kinetic energy and temperature

Pressure of an ideal gas is given by the equation,

1 2
P = = < v >
3 P
1 2 1 2 ;
PV:§pV<v>:§M<v> (as pV = M is the total s as.)
= % u Mg < v2 > where p = number of moles of gas and
Mo = molecular weight of gas
Comparing this equation with PV = upRT (ideal gas law equation ), get
4
1 2 _ . 2. _
guMo<v> = uRT R Mg < vi> = 3RT
1 Mo < vZ> = 3 RT ... (1) which is the gie anslational kinetic energy of 1 mole of
gas and i rop al to the absolute temperature of gas.
3RT
Vims = W (2)
Dividing equation (1) by Avogadr um ,
1M _ 2, E
2 Np 2
%m <vis> = [m = mass of a molecule, k = Boltzmann’s constant. ]

This is the me
the absolute

translational kinetic energy per molecule of the gas and is proportional to
ratdpe of the gas. It does not depend on pressure, volume or type of gas.

Ilton’s law of partial pressure

Suppose a mixture of pi, M2, ..., moles of different ideal gases, mutually inert, is filled in a
container of volume V at temperature T and pressure P and p is the total number of moles.

PV = uRT = (p1 + pu2 + ...)RT

RT RT
p= MR K2Rl - P+ P+,
Y Y

where P1, P2, ... are the partial pressure of the gases in the mixture.
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Thus, the total pressure of the mixture of ideal gases, mutually inert, is the sum of their
partial pressures. The partial pressure of any gas of the mixture is same as the pressure of
that gas at the same temperature when it alone is filled in the container having the same
volume.

11.5 Maxwell's law of molecular speed distribution

Gas molecules perform random motion with different speeds in different ec s. “James
Clerk Maxwell gave molecular speed distribution law for a sample of containing N
molecules as

3 mv2

jz e 2kT y2dy,

Nydv = 47@®N
2nk T

where, total number of gas molecules

N =
Nv = number of molecules per unit speed inte
Ny dv number of molecules having speed intefval, d

mass of a molecule
Boltzmann’s constant = 73 K (-200°C)
absolute temperature T N
"
1 b
[

=<3
I mo

The graph shows the number of
molecules per unit speed interval, Ny
versus speed, v for oxygen gas | [T~
two different temperatures. :

1 LS
The total number of molecules ! ’
given by N

0

b
b

T = 273 K (0°C)

IJ = J. NV dV II'
0 s
v, - v el
and the average spe of olecules P g'll \ dv v dv v —3

of the gas, edeh of Mass m, at <w> Yrms
temperature T <® Graph of N, — v for oxygen

yav = ‘[SkT = 1.59 ‘/—kT
©Tm m

W/<V2> = 3k_T = 1.73 k_T
v m Um

st probable speed (Vp): The speed possessed by the maximum number of molecules
is called the most probable speed, vp.

mV2

3
When v = vp, di4nN[ m ]Ze 2kT V2| =0 oovp = (KT o4 KT
\'

\%)
p
Thus, vp : <v > vims = 1 : 1128 : 1.224.
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11.6 Law of equipartition of enerqy

The average kinetic energy of each monoatomic molecule of a gas in a container is,

<E>:1m<vX2>+1m<vy2>+im<v22>=EkT
2 2 2 2
But, <vx2> = <vy2> = <v22>

<E> = §m<vX2> = EkT
2 2

m <vx2 = %kT

4
Thus, the energy associated with each possible in@@notion of a molecule in a

N |

container is %kT.

Now, consider diatomic gas molecules. T

rotational and vibrational motion besidesqlran nal w,
motion. The rotational motion of such lecule is ﬂ
possible in two different ways, i.e., ab@ut utually
perpendicular axes both passing thro id-point of
a line joining the molecules and jcular to the
line as shown in the figur polyatomic gas
molecules, such a motion can t three mutually
perpendicular axes.

The atoms of a diatomic le perform oscillations e
also due to interatomj esia Thus, a diatomic molecule .
possesses total en prising of three different Le
types of energy: (_,D

_ w

inetic energy,

1
10)12 + Elz(Dzz and
Vibrational energy,

= %pvz + %kxz, where the first and the second terms are the potential and kinetic

<

energy respectively of the vibrator, p is the reduced mass and k
is the force constant of the system.

The number of quadratic terms for different motions appearing in the expression of total
energy of a molecule are called degrees of freedom of the system. It is 3 for a monoatomic
molecule, 5 for a non-vibrating diatomic molecule and 7 if it is vibrates.

Law of equipartition of energy states that the average energy of a molecule in a gas
associated with each degree of freedom is (1/2)kT where k is Boltzmann’s constant and T
is the absolute temperature.
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11.7 Mean free path

The linear distance traveled by a molecule of gas with constant speed between two
successive collisions (with molecules ) is called
free path. Mean free path is the average of such
free paths.

The path of random motion of a gas molecule
is shown in the figure. The molecule moves on
a straight path between two successive
collisions, the length of which is called free
path. But on collision, the direction and
magnitude of its velocity changes.

Consider that one molecule of a gas moves with

average speed v while other molecules are
stationary. Its diameter is d.

During its motion on a straight path, it will not

straight path along which the centre of ecule d

moves. Hence, we can imagine a cylinder ar@und path

of radius d or diameter 2d such that th s outside

this cylinder will not collide with the lecule.

In time t, the molecule will swegp iméaginary cylinder

of cross-sectional area, ‘n:dz, vt. Thus, it will

pass through the cylinder ofgvol nd’vt in time t. If n

is the number of molec er t volume, the moving Sphere of collision

molecule will undergo d llisions in time t. of diameter 2d

The mean free path the average distance between T T T =

two successive @ollisions: S Vo
w—— I ——n

distance travelled by the molecule
total number of collisions

in time t. :
1 1 J—
_ T
A _ 1 P
2=, 2 g A
ntd- vt nmnd  we—d —m
1 1 1 1
In this derivation, the other molecules were assumed to be Y o
stationary. With rigorous analysis it can be shown that ;f b ! €
when the motion of all the molecules is considered, then \ .
the mean free path works out to be e L

~ 1 Imaginary cylinder of
| = —————— length ¥t and radius d

x/E nn:d2






