

FORM TP 2005260

MAY/JUNE 2005

CARIBBEAN EXAMINATIONS COUNCIL

ADVANCED PROFICIENCY EXAMINATION

PHYSICS

UNIT 02 - Paper 01

1 hour 45 minutes

READ THE FOLLOWING INSTRUCTIONS CAREFULLY

- 1. This paper consists of **NINE** questions. Candidates must attempt **ALL** questions.
- 2. Candidates **MUST** write in this answer booklet and all working **MUST** be **CLEARLY** shown.
- 3. The use of non-programmable calculators is permitted.

LIST OF PHYSICAL CONSTANTS

Speed of light in free space	c	=	$3.00 \times 10^8 \text{ m s}^{-1}$
Permeability of free space	μ_0	=	$4\pi \ x \ 10^{-7} \ H \ m^{-1}$
Permittivity of free space	ϵ_0	=	$8.85 \text{ x } 10^{-12} \text{ F m}^{-1}$
Elementary charge	e	=	1.60 x 10 ⁻¹⁹ C
The Planck's constant	h		$6.63 \times 10^{-34} \text{ J s}$
Unified atomic mass constant	и	=	$1.66 \times 10^{-27} \mathrm{kg}$
Rest mass of electron	m_e		9.11 x 10 ⁻³¹ kg
Rest mass of proton	m_p	=	$1.67 \times 10^{-27} \text{ kg}$
Acceleration of free fall	g	=	9.81 m s ⁻²
1 Atmosphere	Atm	=	1.00 x 10 ⁵ N m ⁻²
Avogadro's constant	N_A	=	$6.02 \times 10^{23} \text{ per mole}$

1. (a) (i) Explain what is meant the 'drift velocity' of charge carriers.

(ii) Figure I shows a current i flowing through a length of wire L, with cross sectional area A. There are n charge carriers per unit volume present. The average drift velocity of the charge carriers is v_d and the charge on each charge carrier is q.

Figure I

Show that the drift velocity, v_d , of the charge carriers is given by $v_d = \frac{I}{nqA}$.

[4 marks]

(b) In Figure II, current of $0.10 \, \text{A}$ flows through a copper wire $0.10 \, \text{x} \, 10^{-3} \, \text{m}$ in diameter and then through a salt solution contained in a glass tube $0.010 \, \text{m}$ in diameter. The density of conduction electrons in copper is $1.1 \, \text{x} \, 10^{29} \, \text{m}^{-3}$. The current in the solution is carried equally by positive and negative ions with charges 2e and the number of each ion species per unit volume is $6.1 \, \text{x} \, 10^{23} \, \text{m}^{-3}$.

(i) Calculate the number of electrons passing through the wire EACH second.

[2 marks]

(ii) Calculate the drift velocity of the charge carriers in the salt solution.

[3 marks]

Total 10 marks

2. (a) Figure III shows a point charge Q at A. B is a point a distance r from Q.

Figure III

/* \	TT 7 .	•	~
(i)	Write an	expression	tor
(1)	Will the till	CAPICOSIOII	101

a) the electric field at B

[1 mark]

b) the electric potential at B.

[1 mark]

(ii) Show how the electric field and electric potential of B are related.

[1 mark]

(b) Figure IV shows a small light-conducting sphere supported by a long fine vertical nylon thread, suspended between TWO large metal plates. The plates are connected to a high voltage d.c. supply.

Figure IV

(i) Explain why the uncharged sphere is attracted to the positive plate.

[1 mark]

		(ii)	Explain why the sphere subsequently oscillates between the plates.
			[3 marks]
		(iii)	When the ball is not touching either plate, the force on the ball is 0.05 N. The plates are 10 cm apart and the supply voltage is set to 1 kV.
			Calculate the charge on the sphere.
			[3 marks]
			Total 10 marks
3.	(a)	State	
	,	(i)	Faraday's law of electromagnetic induction
		(1)	rataday s law of electromagnetic induction
			[1 mark]
		(11)	
		(ii)	Lenz's Law.
			[1 mark]

-	
	[21
the po	coil of wire consists of 500 circular loops of radius 2.0 cm. It is placed by the soles of a large electromagnet so that the plane of the coil is perpendicular magnetic field of 0.15 T.
(i)	Calculate the magnetic flux through each turn of the coil.
	[2 r
(ii)	If the electromagnet is turned off and it takes 0.20 s for the field to go d zero, what would be the e.m.f. induced in the coil of wire?

[2 marks]

 	 	 	· · · · · · · · · · · · · · · · · · ·

[2 marks]

Total 10 marks

4. (a) State THREE properties of the ideal operational amplifier (op - amp).

[3 marks]

(b) Figure V shows an op - amp being used as a comparator. The open loop gain of the amplifier is 2×10^5 .

Figure V

(i) Calculate the positive and negative input voltages at which saturation will be reached.

[2 marks]

(ii) A signal with voltage V_i given by $V_i = 0.2 \sin(100\pi t)$ is applied to the comparator in (b) (i). Calculate the frequency of the signal.

[1 mark]

(iii) On the axes below sketch both the input voltage V_i and the output voltage V_o for TWO complete cycles CLEARLY indicating the maximum voltages and periodic times on the axes.

[4 marks]

Total 10 marks

5. (a) Figure VI shows the pn junction of a silicon diode connected to a power supply. Initially, the switch is in the open position as shown.

Figure VI

(i) Sketch the I-V characteristic curve for such a diode.

ſ	2	marks	1

i)	Explain what is meant by layer on Figure VI.	y the deple	etion layer a	at a pn junction	and indicate the
					ſ 1 mark

- (iii) Indicate the following on Figure VI:
 - a) The direction of the diffusion current. Label this arrow with an X.
 - b) The direction of the drift current. Label this arrow with a Y. [2 marks]
- (iv) The switch in Figure VI is now closed. Describe how the depletion layer is affected and explain the effect.

[2 marks]

(b) Consider the circuits shown in Figure VII in which each circuit is connected to an a.c. supply and has a cathode ray oscilloscope (c.r.o.) across its output. For each circuit in Figure VII, (ii)-(iv), sketch the output voltage as seen on the cathode ray oscilloscope on the axes beside the circuit diagram.

Figure VII

[3 marks] Total 10 marks

List TWO general areas in which digital electronics is commonly employed.	(i)	(a)	6.
[2 marks]			
Write down the truth table for the EXCLUSIVE-OR (X-OR) gate.	(ii)		
[1 mark]			
Explain how an X-OR gate can be used to detect when TWO binary digits are different?	(iii)		
[1 mark]			

(b) Figure VIII shows a digital circuit with inputs A and B.

Figure VIII

(i) Complete the truth table below to show the outputs at Y and Z.

A	B	X	Y	Z
0	0	0		
0	1	0		
1	0	0		
1	1	1		

[2 marks]

- (ii) Sketch, in the space provided in Figure VIII, the output waveform at X, Y and Z if the input waveforms A and B are as indicated. [3 marks]
- (iii) What single logic gate is equivalent to the circuit in Figure VIII?

[1 mark]

Total 10 marks

7. Figure IX shows an apparatus for the production of X-rays, using molybdenum as the target metal. Molybdenum's innermost (K-shell) electrons have an energy of 20 keV whilst the outermost (M-shell) electrons have an energy level of 200 eV.

Figure IX

(a) Sketch the typical Intensity-wavelength X-ray spectrum for molybdenum, CLEARLY indicating the minimum continuous X-ray wavelength, λ_{\min} , and the characteristic peaks in the intensity.

[3 marks]

· · · · · · · · · · · · · · · · · · ·			

(b)

Total 10 marks

[2 marks]

iotai io iliai ks

8.	(a)	Expla	nin what is meant by the following terms when referring to a radioaction	ive source.
		(i)	Half-life	
				[1 mark]
		(ii)	Decay constant	
				[1 mark]
	(b)	The h	half-life of a radioactive sample of Radium, $\frac{226}{88}$ Ra, is 1.6 x 10 ³ years.	
		(i)	Calculate the decay constant of $^{226}_{88}$ Ra.	
				[3 marks]

The sample contains 5.0×10^{16} such nuclei at t = 0. Calculate its activity at this

[2 marks]

(ii)

(iii) Calculate the decay rate when the sample is 2.5×10^3 years old.

[Data: 1 year = $3.2 \times 10^7 s$]

[3 marks]

Total 10 marks

9. (a) Figure X shows a section of a Geiger-Muller tube.

Figure X

S			
Т			[3]
Describe the	e principle of the op	eration of a G - M	_
	, r		

-		- 	

(b) A radioactive source is known to emit α , β and γ radiation. The source is placed in a magnetic field as shown in Figure XI. The field is directed into the page. A Geiger-Muller tube moves from position A to position B.

Figure XI

		[1 mark]
	Position A	
(i)	Identify the type of radiation recorded at position A.	

(ii) Show on Figure XI the region where γ radiation would be detected. [1 mark]

(111)	If the distance from the source to the Geiger-Muller tube is about 15 α -particles cannot be detected. Explain why.	cm
	[2 ma	 rks]
	Total 10 ma	rks

END OF TEST