FORM TP 2004251

TEST CODE **02138020**

MAY/JUNE 2004

CARIBBEAN EXAMINATIONS COUNCIL ADVANCED PROFICIENCY EXAMINATION

PHYSICS

UNIT 1 - PAPER 02

2 hours and 15 minutes

READ THE FOLLOWING INSTRUCTIONS CAREFULLY

- 1. This paper consists of **NINE** questions.
- 2. Section A consists of **THREE** questions. Candidates must attempt **ALL** questions in this section. Answers for this section must be written in this answer booklet.
- 3. Section B consists of **SIX** questions. Candidates must attempt **THREE** questions in this section, **ONE** question from **EACH** Module. Answers for this section must be written in the answer booklet provided.
- 4. All working **MUST** be **CLEARLY** shown.
- 5. The use of non-programmable calculators is permitted.

SECTION A

Attempt ALL questions. You MUST write in this answer booklet. You must NOT spend more than 30 minutes on this section.

1.

Figure 1

A ball is released on an inclined plane, Figure 1, and the distance travelled is measured at intervals as it rolls down the slope. A distance against time graph is drawn at Figure 2 on page 5.

Find the gradient of the graph when $t = 0.5$ s.	
•	
	-
	[3
Use data from the graph to find the acceleration of the ball.	
	[3

	[3 m
TCC .1	
If further timings and displacent to become zero again? Explain	nents were taken after 1.8 s, would you expect the displace a your answer.

Distance/time graph

Figure 2

2. A tube with a variable length is closed at one end. A series of tuning forks is used to create resonance at the fundamental frequency for various lengths of the tube. The results obtained are shown in Table 1.

Table 1

Fundamental Frequency, f/Hz	200	250	300	400	500
Length, l/mm	406	322	264	194	153

)	On page 7, plot a graph of $1/f$ against l , starting the scale on the l axis at 100 mm. [4 mark	
	Use the graph to find the speed of sound during the experiment.	
		[5 marks]
	Find the end connection for the tube.	
		[1 mark]

3. A teacher asks her student to determine the specific heat capacity of the 2 kg aluminium block shown in Figure 3.

Figure 3

The student uses two heaters and each heater is rated at 100W. The student takes a series of measurements of temperature, θ , of the block at time t. The data obtained are recorded in Table 2.

Table 2

Plot a graph of temperature versus time for the block on the grid provided on page 9.

Time, t/s	0	90	180	270	360	420
Temperature, θ°C	27.1	37.2	47.0	56.8	67.0	77.3

		[3 marks]
(b)	From your graph determine the specific heat capacity of aluminium.	

[5 marks]

(a)

	[1 mark
gest how the experiment might be improved.	[I mark

SECTION B

You must attempt THREE questions from this section. Choose ONE question EACH from Module 1, 2 and 3. You MUST write your answers in the answer booklet provided.

MODULE 1

Answer EITHER Question 4 OR Question 5.

- **4.** (a) What conditions are required for a body to undergo
 - (i) parabolic motion?
 - (ii) circular motion?

[4 marks]

- (b) Explain what is meant by a 'geostationary satellite'. Show that the radius of the orbit of a geostationary satellite is independent of its mass. [4 marks]
- (c) A small mass of 0.60 kg is rotated at the end of a string in a horizontal circle of radius 1.20 m. The string will break if the tension exceeds 60 N. What is the GREATEST frequency of revolution that is possible? [5 marks]
- (d) The same mass of $0.60 \,\mathrm{kg}$ is now rotated at the end of another string at a constant speed, v, in a vertical circle of radius $1.20 \,\mathrm{m}$. The minimum tension in the string is $2.1 \,\mathrm{N}$.
 - (i) State and explain where the tension in the string is MAXIMUM and MINIMUM.
 - (ii) Find the speed of the mass.

[7 marks]

- 5. (a) (i) Define 'linear momentum' and state the principle of conservation of linear momentum.
 - (ii) a) Distinguish between 'inelastic' collision and 'perfectly elastic' collisions.
 - b) Describe how the conservation of energy applies in EACH case.
 - (iii) Explain the meaning of the 'impulse of a force' and show the relation between the impulse of a force in a body and the momentum of the body. [8 marks]
 - (b) Two trolleys are used to investigate collisions. A trolley of mass 1.60 kg is pushed and hits a second trolley, of mass 0.80 kg, which is moving in the same direction, but at a lower speed. The experiment is repeated and the results are shown below.

1st Collision

Mass	Speed before collision	Speed after collision
1.60 kg	0.70m s^{-1}	0.30m s^{-1}
0.80 kg	$0.10 \mathrm{m \ s^{-1}}$	0.89m s^{-1}

2nd Collision

Mass	Speed before collision	Speed after collision
1.60 kg	$0.60 \mathrm{m \ s^{-1}}$	0.37 m s^{-1}
$0.80\mathrm{kg}$	$0.10 \mathrm{m s^{-1}}$	0.57 m s^{-1}

- (i) Show whether or not the two sets of data are consistent with the law of conservation of momentum.
- (ii) Determine whether the collisions are elastic or inelastic.
- (iii) Why should the speeds be measured IMMEDIATELY before and after the collisions?
- (iv) The 1.60 kg trolley collided with another of the same mass, moving with the same speed, in the opposite direction.
 - a) What would be the TOTAL momentum after collision?
 - b) Explain your answer.

[12 marks]

MODULE 2

Answer EITHER Question 6 OR Question 7.

- **6.** (a) (i) Explain what is meant by 'refraction of sound waves'.
 - (ii) Draw sketches to show the refraction of sound waves as the waves travel from cool air to warmer air and from warm air to cooler air.
 - (iii) Hence explain why sound waves are more audible at night than in the day.

[8 marks]

(b) Figure 4 shows a tuning fork with a frequency of 440 Hz, held just above the top of a uniform tube containing water. The tube can excite the column of air above the water, whose level can be changed by a tap at the bottom of the tube. As the water is drained out, the sound intensity of the fork is enhanced when the air column has a length of 0.6 m and again when the air column has a height of 1m.

Using these data, calculate a value for the speed of sound in air.

Figure 4

[4 marks]

(c) Figure 5 shows two loudspeakers S_1 and S_2 separated by 0.50 m. These speakers are connected to the output of an amplifier and they form sound waves with the same amplitude at a frequency of precisely 4400 Hz. The amplifier emits two waves 180° out of phase. A set of chairs is arranged in a semicircle 30.0 m from the speakers.

[Speed of sound in air = 330 m s^{-1}]

Figure 5

- (i) Calculate the amplitude of the wave at the chair on the perpendicular bisector (centre line) of the line between the speakers.
- (ii) At what MINIMUM distance, D, to the right of this central chair is there a MAXIMUM in the sound intensity? [8 marks]

- 7. (a) (i) Define 'simple harmonic motion' (S.H.M.) and write down an expression relating acceleration to displacement in S.H.M.
 - Show that the time period of oscillation, T, of a simple pendulum of length l and (ii) mass m is given by $T = 2\pi \sqrt{\frac{l}{g}}$ where g is the acceleration due to gravity.
 - [8 marks]
 - (b) A simple pendulum has a length of 2.0 m and a mass of 0.5 kg. It is hanging from the roof of a car that is travelling at 5 m s⁻¹ and banking a corner of radius 15 m.
 - Calculate the time period of oscillation for the pendulum. (i)
 - (ii) If the car is now at rest, and the pendulum undergoes S.H.M, would its time period be shorter or longer than that calculated in 7 (b) (i)? Explain your answer. [6 marks]
 - A particle undergoes S.H.M. in which the displacement in metres is given by (c)

$$x = 2 \times 10^{-3} \sin 3\pi t$$

- (i) Determine the angular frequency of this oscillation.
- (ii) · Find the period of this S.H.M.
- (iii) Find at time t = 1.0 s
 - a) the displacement
 - **b**) the velocity
 - the acceleration. c)

[6 marks]

MODULE 3

Answer EITHER Question 8 OR Question 9.

- 8. (a) (i) State and explain the processes by which a hot body can lose heat to the surroundings.
 - (ii) Explain the terms 'specific heat capacity' and 'specific latent heat' of fusion of a material. [8 marks]
 - (b) Figure 6 shows a furnace emitting radiation through a hole of area 1.0 cm².

Figure 6

The radiation is absorbed by a pyrex beaker of mass 20 g containing 50 g of water and 30 g of ice in equilibrium. The temperature of the furnace is 1500° C and the specific heat capacity of pyrex is $840 \text{ J kg}^{-1} \text{ K}^{-1}$.

Calculate the time it will take for the beaker and its contents to be heated through 20°C. [7 marks]

(c) The graph of Figure 7 refers to an experiment in which a crystalline material is heated at a constant rate. The material melts at 85° C and the liquid is heated to 110° C. The specific heat capacity of the crystalline state is $430 \, \mathrm{J \, kg^{-1} \, K^{-1}}$.

Figure 7

Calculate

- (i) the specific latent heat of fusion of the material
- (ii) the specific heat capacity of the material in the liquid phase.

[5 marks]

- 9. (a) State the first law of thermodynamics in the form of an equation and explain the symbols used.
 - (ii) Define the term 'the mole'.
 - (iii) The molar heat capacity of a gas at constant pressure, c_p , differs from the molar heat capacity at constant volume, c_v . State which is the GREATER and explain why. [8 marks]
 - (b) A fixed mass of an ideal monatomic gas with $c_v = \frac{3R}{2}$ undergoes two successive changes, from an initial state (P_o, V_o) to (P_o, 3V_o) and then to (4P_o, 3V_o)
 - (i) Draw a graph to represent these changes.
 - (ii) Show that the OVERALL change of internal energy is given by $\Delta U = \frac{33}{2} P_o V_o$
 - (iii) $P_o = 3.039 \text{ x } 10^5 \text{ Pa} \text{ and } V_o = 4 \text{ x } 10^{-3} \text{ m}^3 \text{ calculate}$
 - a) the work done by the gas on the surroundings
 - b) the thermal energy added to the gas.

[12 marks]

Total 20 marks

END OF TEST