TEST CODE **02138010**

FORM TP 2004250

MAY/JUNE 2004

CARIBBEAN EXAMINATIONS COUNCIL ADVANCED PROFICIENCY EXAMINATION

PHYSICS

UNIT 1 - PAPER 01

1 hour and 45 minutes

READ THE FOLLOWING INSTRUCTIONS CAREFULLY

- 1. This paper consists of **NINE** questions. Candidates must attempt **ALL** questions.
- 2. Candidates MUST write in this answer booklet and all working MUST be CLEARLY shown.
- 3. The use of non-programmable calculators is permitted.

1.	(a)	State Newton's Second and Third Laws of motion.	
			[2 marks]

(b) A pendulum with a bob of mass 40 g hangs from the roof inside a car. The car accelerates horizontally and the string of the pendulum takes up a steady position at 29° to the vertical as shown in Figure 1.

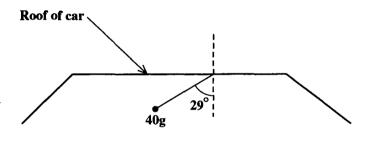
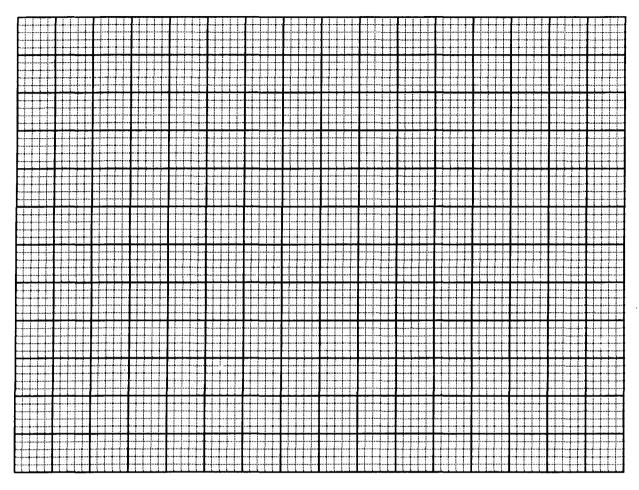


Figure 1

(i) Draw on Figure 1, the forces acting on the pendulum bob. Also show the direction of acceleration of the car. [2 marks]

(ii)	Calculate the magnitude of the resultant force acting on the bob.

[3 marks]


(iii) Calculate the magnitude of the acceleration of the bob.

[2 marks]

					•		[1 m
							Total 10 m
A chi	ld drops a	ball and cate	hes it at the max	ximum heig	the ball re	eaches after it has	s bounced TW
(a)	Explai	n why the bal	l does NOT rea	ich its origir	nal height.		

							[1 m
(b)	On the	grid below, s	ketch a graph	to represen	t the variatio	on of velocity wi	th time for th
	during	its motion un	til it is caught.	(Ignore air	resistance)		
444							
						++++++++	
		! 					
		╎┊┋┋┋		+ 			
1111						~ 	

[4 marks]

On the grid below, sketch a graph to represent the acceleration of the ball during the same time period as in 2 (b), ignoring the periods when it is in contact with the ground.

[2 marks]

(d)	If the ball reaches the ground for the first time 30 s after the child drops it, find the height fr which it was dropped.							
	[3 marks							

Total 10 marks

3.	(a)	Explain what is meant by the following terms:				
		(i)	Gravitational potential energy			
				[1 mark]		
		(ii)	Kinetic energy			
				[1 mark]		
				[I Mark]		
		(iii)	Conservation of energy			
				[1 mark]		
	(b)	What speed	energy transformation is occurring when a body slides down a slope	at a constan		
				[1 mark]		
	(c)	The sh	worker slides a 50 kg crate down an 8.0 m long sloping plank on to the ip's deck is 5.0 m below dock level from where the crate is released. The ding force of 150 N on the crate as it accelerates down towards the ships of the crate as it accelerates down towards the ships of the crate as it accelerates.	he plank exerts		
		(i)	What is the origin of the 150 N force?			
				[1 mark]		

	(ii)	How much work is done by the crate on the plank as it slides the length of the plank?				
		[1 mark]				
	(iii)	By considering the energy involved, calculate the speed of the crate as it reaches the deck.				
		[4 marks]				
		Total 10 marks				
		ttached to a vertical helical spring and displaced a distance, A, from equilibrium as shown is released so that it oscillates with simple harmonic motion with angular frequency w. Figure 2				
(a)	Write	down an expression relating				
	(i)	the displacement x with time t				
		[1 mark]				
	(ii)	the corresponding velocity v of the mass, with time t .				
		[1 mark]				

(a)

4.

In the space provided below, sketch graphs on the same pair of axes, of the kinetic energy, E_k the potential energy, E_p , and the total energy, E , of the mass against time.
[3 marks]
The period of oscillation, T, of the mass m is given by $T = 2\pi \sqrt{\frac{m}{k}}$ where k is the spring constant
of the spring. There are 21 oscillations in 11 seconds for a mass of 250 g. Find the value of the spring constant.
[3 marks]
State how the time period would be affected if the system were taken to a planet where gravity was $\frac{1}{4}$ that on Earth and explain why.
[2 marks]
Total 10 marks
Total 10 marks

5.	(a)	Explai	n what is meant by
		(i)	the refraction of light
			[1 mark]
		(ii)	the refractive index of a material.
			[1 mark]
	(b)		the TWO conditions necessary for the total internal reflection of a ray of light crossing erface between Aniline with a refractive index 1.59 and Potassium Iodide (refractive 1.67).
			·
			[2 marks]
	(c)	Calcul	ate the critical angle for an interface between Aniline and Potassium Iodide.
			[3 marks]

	(d)	(i)	Draw a diagram to represent plane wave fronts being totally internally reflected at a boundary between two media.
			[2 marks]
		(ii)	In which medium would the speed of the wave be higher?
			[1 mark]
			Total 10 marks
6.	(a)	State the focal le	ne relationships between the radius of curvature of a converging lens, its power and its ength.
			[2 marks]
	(b)	In the s	pace below draw a ray diagram to show how an image is formed by a converging lens croscope.
			[3 marks]

	(c)	(i)	(i) A converging lens has a focal length of 20.0 cm. Use the lens form position and size of the image of a 1.0 cm high object which is placed 1 lens.			
				[4 marks]		
		(ii)	Is the image real or virtual?			
				[1 mark]		
				Total 10 marks		
7.	(a)	Define	e the following terms:			
		(i)	Tensile stress			
				[1 mark]		
		(ii)	Tensile strain			
				[1 mark]		
		(iii)	Young modulus			
				[1 mark]		
		(iv)	Hooke's law			
				[1 mark]		

(b) Figure 3 shows the result of an experiment using a steel wire with length 2.0 m and diameter 1.0 mm.

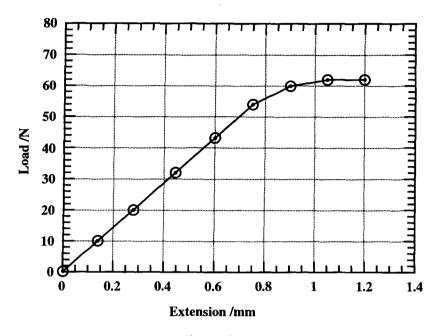


Figure 3

(i	At what load	did the wire	begin to	leviate from	n Hooke's law?
u) At what load	i uiu ilie wiie	begin to t	ieviale moi	II HOOKE Slaw?

[1 mark]

(ii) What was the stress in the wire when it began to deviate from Hooke's law?

[2 marks]

(iii) What strain has the wire undergone at this point?

[1 mark]

(iv) What is the value of Young modulus for the material of this wire?

[2 marks]

Total 10 marks

8.	The pressure, p , of an ideal gas is related to the mean square speed $< c^2 >$ of its molecules by the equation					
			$p = \frac{1}{3} \frac{Nm}{V} < c^2 >$			
	wher	e V is the	e volume of the gas, N is the number of molecules and m is the mass of a molecule.			
	(a)	Write down the equation of state for an ideal gas, stating the meaning of EACH of the symbols.				
			[1 mark			
	(b)		space below, derive an expression for the average kinetic energy of a monatomic moleculideal gas in terms of its absolute temperature T .			
			[3 marks			
	(c)		stainer of volume $3.5 \times 10^{-3} \text{m}^3$ contains hydrogen gas at a pressure of $6.0 \times 10^5 Pa$ and exature of 400K .			
		Calcul	late			
		(i)	the number of moles of hydrogen in the container			
			[2 marks			
		(ii)	the number of hydrogen atoms present in the container			
			[2 marks			

 	 		<u> </u>	 	
	 				

9. The vacuum flask in Figure 4 is used to keep a mixture of ice and water cold.

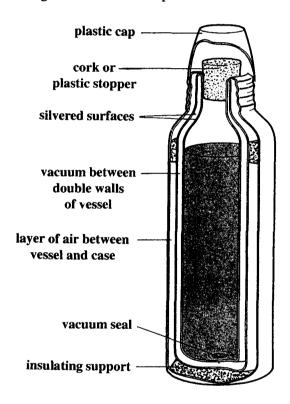


Figure 4

(a)

ermal energy into	o the Hask.			
		 <u></u>	 <u></u>	

The th	ckness of the copper of the boil	
(i)	Sketch graphs of temperature	against distance across the wall of the boiler when
	a) there is scale on the ini	ner boiler wall
		[1 mark]
	b) there is no scale on the	boiler wall.
		[2 marks]
(ii)		the rate of loss of heat from the boiler. e scale = $0.6 \text{ W m}^{-1} \text{ K}^{-1}$; thermal conductivity of
		[2 marks]

how the mechanisms of thermal conductivity in scale and coppe lues of thermal conductivity.					
,					
 			[2 ma		
			Total 10 ma		

END OF TEST