

FORM TP 23246

MAY/JUNE 2003

CARIBBEAN EXAMINATIONS COUNCIL

ADVANCED PROFICIENCY EXAMINATION

PHYSICS

UNIT 02 - Paper 01

1 hour 45 minutes

READ THE FOLLOWING INSTRUCTIONS CAREFULLY

- 1. This paper consists of **NINE** questions. Candidates must attempt **ALL** questions.
- 2. Candidates **MUST** write in this answer booklet and all working **MUST** be **CLEARLY** shown.
- 3. The use of non-programmable calculators is permitted.

1.	(a)	Defi	ine the 'Farad'.	
		**************************************		[1 mark]
	(b)	Deriv serie	ive an expression for the total capacitance, C_T , of three capacitors, C_I , es.	C_2 and C_3 , in
				[3 marks]
	(c)	A par 1.0 x	arallel-plate, air-filled capacitor having area $5.0 \times 10^{-3} \text{ m}^2$ and pla $\times 10^{-3} \text{ m}$ is charged to a potential difference of 500 V .	te separation
		Calcu	ulate the	
		(i)	capacitance of this capacitor	***************************************
				[3 marks]
		(ii)	energy stored in this capacitor.	
				[3 marks]

Total 10 marksGO ON TO THE NEXT PAGE

2.	(a)	Define	e EACH of the following terms:	
		(i)	Magnetic flux:	
				[1 mark
		(ii)	Tesla:	
				[1 mark]
	(b)	State		•
		(i)	Faraday's Law	
		,		
				[1 mark]
		(ii)	Lenz's Law.	
		-		
		-		
		-		
		_		
				[1 mark]

Conducting bar

V

Conducting rods

(c) Two conducting rods are joined at right angles to each other as shown in Figure 1.

Figure 1

A conducting bar in contact with the rods starts at the vertex and moves with a constant velocity (v) of 4.20 m s^{-1} along them as shown. A magnetic field of magnitude 0.450 T is directed perpendicularly out of the page.

Find the

····	
	[2]
mag	netic flux through the triangle at seconds
	[2]
elect	romotive force (e.m.f.) induced in the moving rod at 2 seconds.

Total 10 marks

[2 marks]

3. (a)	Write an expression for the total resistance, R_T , of three resistors R_I , R_2 and R_3 , in parallel.
	[1 mark]
(b)	State Ohm's Law.
	[1 mark]
(c)	Explain the difference between the electromotive force (e.m.f.) and the terminal potential difference (p.d.) of a battery.
	[2 marks]

(d) A set of measurements were made using the circuit of Figure 2.

Figure 2

Table 1 below shows some of the results obtained.

R	V	I
0	0	0.15 A
300 Ω	10 V	
∞		

Table 1

Fill in the blank spaces in the table with the missing data.

[6 marks]

4.	(a)	Expla	ain what is meant by EACH of the following:	
		(i)	P-type semiconductor	
				[1 mark
		(ii)	N-type semiconductor	
				[1 mark]
		(iii)	Doping, as applied to semiconductors	
				[1 mark]
		(iv)	Depletion region	
				[1 mark]
	(b)	Sugge	st ONE application of a p-n junction diode.	
				[1 mark]

(c) Figure 3 shows a combination of two silicon diodes in a circuit.

Figure 3

The characteristic I – V curve for the diodes is shown in Figure 4.

Figure 4

(i) Calculate the value of the output voltage, V_0 , when

a)
$$V_i = 10 \text{ V}$$

[2 marks]

b)
$$V_i = -10.0 \text{ V}.$$

[1 mark]

(ii) Sketch the output when $V_i = 10$ Sin ω t, where $\omega = 100$ rad s⁻¹, including appropriate numerical values on the scales.

[2 marks]

5.

(a)	In the space provided below, sketch a typical gain frequency curve for an amplifier.	n operationa
		[3 marks
(b)	What is meant by a 'virtual earth' in an operational amplifier circuit?	[3 marks
(b)	What is meant by a 'virtual earth' in an operational amplifier circuit?	[3 marks
(b)	What is meant by a 'virtual earth' in an operational amplifier circuit?	[3 marks
(b)		
(b) (c)		
		[3 marks

(d) Figure 5 shows a cascade amplifier circuit.

Figure 5

Calculate the

	[41
output voltage, V_0 , when $V_i = 0.01$ V.	
itput voltage, V_0 , when $V_i = 0.01$ V.	

6. (a) (i) Arithmetic operations are usually performed by adders. A half adder circuit is used to add the 1's column in binary addition. Write the truth table for a half-adder.

[2 marks]

(ii) You are provided with an Exclusive-OR (EX-OR) gate and an AND gate for designing a half adder circuit. Draw a circuit diagram to show how these could be arranged.

[2 marks]

(b) Draw a circuit diagram to show how the NAND gates could be used to build a flip-flop.

[1 mark]

(c) Write the truth table for the circuit shown in Figure 6, indicating the output at X, Y and Z.

Figure 6

(d) Draw a simple logic circuit to represent the truth table below in which A and B are inputs and X is the output.

Α	В	X
0	0	0
0	1	0
1	0	1
1	1	0

[2 marks]

7.	(a)		e THREE experimental facts about the culate (photon) model of light.	out the photoelectric effect which support the
		<u> </u>		
			1994	
				[3 marks]
	(b)		_	n insulated metal plate, the plate emits electrons
			while and then stops.	
		Expl	ain why the process eventually sto	ops.
				[1 moult]
				[1 mark]
	(c)		energy level scheme for a newly re 7. The electron is in its ground	y discovered one-electron element is shown in state.
			n = 4	–2 eV
			n = 2	-10 eV
			n = 1	-20 eV
			Figure	7
		(i)	Determine the amount of energround state.	rgy it will take to ionize an electron from the
				[1 mark]
		(ii)	State what will happen if a 6 e	V photon strikes the atom
		()	State with mapped in a c c	photon sames are areas.
				[1 mark]

(i)	Calculate the frequency of radiation emitted.
	·
	[2 marks]
(ii)	Calculate the wavelength of radiation emitted.
	•
	[1 mark]
(iii)	In which region of the electromagnetic spectrum would this radiation be found?
	[1 mark]
	Total 10 marks

(d)

3.	(a)	(i)	Explain the principle by which a continuous X-ray spectrum is produced.
			[2 marks]
		(ii)	Why is a vacancy in an inner electron shell usually required for an atom to emit an X-ray photon?
			·
			[2 marks]

(b) A beam of X-rays, of intensity I_0 , is incident on a slab of material of thickness x_1 and absorption coefficient μ_1 , as shown in Figure 8 a.

Figure 8 a

	[1 mark
(i)	Write an expression for the emerging intensity, I , in terms of I_0 , μ_I and x_I .

(ii) A second slab of material, of thickness x_2 and absorption coefficient μ_2 , is placed alongside the first slab as shown in Figure 8 b.

Figure 8 b

a`	Show	that the	Intensity	. 1.	is	given	hv
u,	OHOW	mut mic	ATTICITION Y	. L	, 10	Z1 V C11	$\boldsymbol{\sigma}$

$$I = I_0 e^{-(\mu_I x_I + \mu_Z x_Z)}$$

						F 2	
						1 4 m	OPLC
						1.7 11	arksl

b) Calculate the value of *I* where $I_0 = 500 \text{ Wm}^{-2}$, $\mu_I = 8.0 \text{ m}^{-1}$, $x_I = 2.0 \text{ mm}$, $\mu_2 = 4.0 \text{ m}^{-1}$, $x_2 = 4.0 \text{ mm}$.

[2 marks]

9.	(a)	Expl	ain what is meant by EACH of the following terms:
		(i)	Nuclear fission
			[1 mark]
		(ii)	Nuclear fusion
			[1 mark]
		(iii)	Binding energy
			[1 mark]
	(b)		ucleus of an atom of uranium can be represented by $^{235}_{92}$ U. How many of EACH following particles are there in the nucleus?
		(i)	Protons
			[1 mark]
		(ii)	Neutrons
			[1 mark]

			[1 mark]
	(ii)	the energy, in eV, of EACH neutron produced in the reaction.	
			[4 marks]
	(i)	the energy E, in eV, released during the reaction	
	Calcu		
	1 u =	931.5 MeV/c ²	
	$_{0}^{1}$ n =	= 1.0087 u	
	⁹² kr	= 91.9262 u	
	¹⁴¹ ₅₆ Ba	u = 140.9141 u	
	²³⁵ ₉₂ U	= 235.0439 u	
	Mass	es:	
,	All III	$^{1}_{0}$ n + $^{235}_{92}$ U $\rightarrow ^{236}_{92}$ U* $\rightarrow ^{141}_{56}$ Ba + $^{92}_{36}$ kr + 3 $^{1}_{0}$ n + E	
)	Δn in	iduced fission reaction is described by the following equation.	

END OF TEST