TEST CODE **002471** # **FORM TP 23244** MAY/JUNE 2003 ### CARIBBEAN EXAMINATIONS COUNCIL ## ADVANCED PROFICIENCY EXAMINATION #### **PHYSICS** UNIT 01 - Paper 01 1 hour and 45 minutes ### READ THE FOLLOWING INSTRUCTIONS CAREFULLY - 1. This paper consists of **NINE** questions. Candidates must attempt **ALL** questions. - Candidates MUST write in this answer booklet and all working MUST be CLEARLY shown. - 3. The use of non-programmable calculators is permitted. | (c) A body moving through air at a high speed, ν, experiences a force, F, given by F = kAρν², where A is the surface area of the body, ρ is the density of air and k is a unitless constant. If A = 0.10 ± 0.005 m², ρ = 1000 ± 0.1 kg m⁻³ and ν = 30.0 ± 1 m s⁻¹, find the fractional error in the force, F. | 1. (a) | Explain the principle which underlies the checking of the balance of equations using base quantities. | |---|--------|--| | (c) A body moving through air at a high speed, v, experiences a force, F, given by F = kAρv², where A is the surface area of the body, ρ is the density of air and k is a unitless constant. If A = 0.10 ± 0.005 m², ρ = 1000 ± 0.1 kg m⁻³ and v = 30.0 ± 1 m s⁻¹, find the fractional error in the force, F. (d) The speed, v, of ocean waves is related to the wavelength, λ, and the acceleration due to gravity, g. Two relationships are proposed, v = agλ or v = b√gλ, where a and b | | | | (c) A body moving through air at a high speed, v, experiences a force, F, given by F = kAρv², where A is the surface area of the body, ρ is the density of air and k is a unitless constant. If A = 0.10 ± 0.005 m², ρ = 1000 ± 0.1 kg m⁻³ and v = 30.0 ± 1 m s⁻¹, find the fractional error in the force, F. (d) The speed, v, of ocean waves is related to the wavelength, λ, and the acceleration due to gravity, g. Two relationships are proposed, v = agλ or v = b√gλ, where a and b | | [1 mark] | | (c) A body moving through air at a high speed, v, experiences a force, F, given by F = kAρv², where A is the surface area of the body, ρ is the density of air and k is a unitless constant. If A = 0.10 ± 0.005 m², ρ = 1000 ± 0.1 kg m⁻³ and v = 30.0 ± 1 m s⁻¹, find the fractional error in the force, F. (d) The speed, v, of ocean waves is related to the wavelength, λ, and the acceleration due to gravity, g. Two relationships are proposed, v = agλ or v = b√gλ, where a and b | (b) | State ONE limitation of using base quantities to check the balance of equations. | | (c) A body moving through air at a high speed, v, experiences a force, F, given by F = kAρv², where A is the surface area of the body, ρ is the density of air and k is a unitless constant. If A = 0.10 ± 0.005 m², ρ = 1000 ± 0.1 kg m⁻³ and v = 30.0 ± 1 m s⁻¹, find the fractional error in the force, F. (d) The speed, v, of ocean waves is related to the wavelength, λ, and the acceleration due to gravity, g. Two relationships are proposed, v = agλ or v = b√gλ, where a and b | | | | F = kAρν², where A is the surface area of the body, ρ is the density of air and k is a unitless constant. If A = 0.10 ± 0.005 m², ρ = 1000 ± 0.1 kg m⁻³ and ν = 30.0 ± 1 m s⁻¹, find the fractional error in the force, F. [3 marks] (d) The speed, ν, of ocean waves is related to the wavelength, λ, and the acceleration due to gravity, g. Two relationships are proposed, ν = agλ or ν = b√gλ, where a and b | | [1 mark] | | (d) The speed, v , of ocean waves is related to the wavelength, λ , and the acceleration due to gravity, g . Two relationships are proposed, $v = ag\lambda$ or $v = b\sqrt{g\lambda}$, where a and b | (c) | $F = kA\rho v^2$, where A is the surface area of the body, ρ is the density of air and k is a unitless constant. If $A = 0.10 \pm 0.005$ m ² , $\rho = 1000 \pm 0.1$ kg m ⁻³ and | | (d) The speed, v , of ocean waves is related to the wavelength, λ , and the acceleration due to gravity, g . Two relationships are proposed, $v = ag\lambda$ or $v = b\sqrt{g\lambda}$, where a and b | | | | (d) The speed, v , of ocean waves is related to the wavelength, λ , and the acceleration due to gravity, g . Two relationships are proposed, $v = ag\lambda$ or $v = b\sqrt{g\lambda}$, where a and b | | | | (d) The speed, v , of ocean waves is related to the wavelength, λ , and the acceleration due to gravity, g . Two relationships are proposed, $v = ag\lambda$ or $v = b\sqrt{g\lambda}$, where a and b | | | | gravity, g. Two relationships are proposed, $v = ag\lambda$ or $v = b\sqrt{g\lambda}$, where a and b | | [3 marks] | | | | gravity, g. Two relationships are proposed, $v = ag\lambda$ or $v = b\sqrt{g\lambda}$, where a and b | | | | | | [3 marks] | | | | (e) | | ming that your result in (d) is correct, determine the full equation if an ocean wave speed of 16 m s^{-1} and a wavelength of 160 m . | |---------------|----------------|--| | | | | | | | | | | | [2 marks] | | | | Total 10 marks | | 2. (a) | Defir
gravi | the term 'acceleration' and explain what is meant by the 'acceleration due to ty'. | | | | | | | | | | | | | | | | [2 marks] | | (b) | a hori | l is thrown horizontally from a height, h , and with a speed, u . It hits the ground at zontal distance, d , from where it is thrown in a time, t . Throughout this question he that air resistance is negligible. | | | (i) | Use the equations of motion to derive the relationship between h and d , given that the acceleration due to gravity is g . | | | | | | | | | | | | | | | | [3 marks] | | (ii) | |---------------| | | | | | | | | | (iii) | | | | | | | | (a) (i) | | | | (ii) | | | | | | (iii) (a) (i) | (b) Consider the Figures 1 and 2 which show two identical, rectangular wooden blocks floating respectively in water and in a liquid L. (Density of water = 1000 kg m^{-3}) 2 cm 8 cm Liquid L Figure 1 Figure 2 | Find | Find the | | | | |------|--|--|--|--| | a) | weight of the block | [4 marks] | | | | | b) | density of liquid L. | | | | | | | | | | | | [2 marks] | | | | | | ain why frictional forces between the blocks and the water should NOT be dered in your calculations. | | | | | | | | | | | | [1 mark] | | | | | te the TWO conditions necessary for simple harmonic motion (S.H.M.) to occur. | State | (a) | 4. | |---|-------|-----|----| | | | | | | [2 marks | | | | | A body is undergoing S.H.M. of amplitude 4×10^{-2} m and with a maximum speed of $0.20 \mathrm{m s^{-1}}$. Calculate the period of the oscillation given that the velocity v , of a body undergoing S.H.M. is $v = \omega \sqrt{A^2 - x^2}$ where ω is the angula velocity, A is the maximum displacement and x its displacement from the equilibrium position. | (i) | (b) | | | [2 marks | | | | | Calculate the maximum acceleration during the motion. | (ii) | | | | [2 marks | | | | | In the space below, sketch and label on the same axes, graphs of kinetic energy against displacement and potential energy against displacement for one complet oscillation of the body. | (iii) | | | | | | | | | | | | | | [3 marks | | | | | Write an equation to represent the relationship between kinetic energy and potential energy during S.H.M. | (iv) | | | | [1 mark | | | | | 5. | (a) | Explain what is meant by the 'refractive index' and 'critical angle' of a material. | | | | |----|-----|---|--|--|--| | | | Refractive index: | | | | | | | | | | | | | | | [1 mark] | | | | | | Critical angle: | | | | | | | | | | | | | | <u></u> | [1 mark] | | | | | (b) | (i) | A sound wave has a speed of 330 m s ⁻¹ in air and 1.5 x 10 ³ m s ⁻¹ in water. Determine the refractive index for sound waves passing from air into water. | | | | | | | | | | | | | | [3 marks] | | | | | | (ii) | Calculate the critical angle for sound waves at a boundary between air and water. | | | | | | | [2 moules] | | | | | | | [2 marks] | | | (c) In the space below, draw a labelled ray diagram to represent two sound waves striking a boundary between air and water, with one wave at an angle less than the critical angle and one wave which is totally internally reflected. [3 marks] | 6. | (a) | State the meaning of the term 'diffraction'. | | | |----|-----|---|--|--| | | | | | | | | | [1 mark | | | | | (b) | Briefly describe how the diffraction of (i) sound and (ii) light may be observed. | | | | | | Sound: | | | | | | | | | | | | [1 mark] | | | | | | Light: | | | | | | | | | | | | | | | | | | [2 marks] | | | | | (c) | A diffraction grating has 300 lines per millimetre. How many orders of diffraction are possible for red light of wavelength 6.4×10^{-7} m? | | | | | | | | | | | | | | | | | | [4 marks] | | | | | (d) | Without performing any calculation, if blue light were to be used instead of red light, would you expect a larger or smaller number of orders of diffraction to be possible? Explain your answer. | | | | | | | | | | | | [2 marks] | | | | 7. | (a) | Defi | ne the terms 'specific heat capacity' and 'heat capacity'. | |----|-----|------|--| | | | Spec | ific heat capacity: | | | | | | | | | | [1 mark | | | | Heat | capacity: | | | | | | | | | | [1 mark | | | (b) | (i) | A mass of 0.45 kg of water is heated by an immersion heater in a container of heat capacity 90 J K ⁻¹ . The water is heated for 9 minutes and the temperatur rises from 25 °C to 79 °C. Find the power of the heater. You may consider heaters losses negligible. | [6 marks | | | | (ii) | Use the kinetic theory of matter to outline what happens to the thermal energ supplied by the immersion heater in (b) (i) above. | | | | | | | | | | | | | | | [2 marks | | 8. | (a) | Exp | lain what is meant by 'tensile stress', 'tensile strain' and 'Young modulus'. | |----|-----|------|---| | | | Tens | sile stress: | | | | | [1 mark] | | | | lens | sile strain: | | | | | [1 mark] | | | | Youi | ng modulus: | | | | - | [1 mark] | | | (b) | | t stress would be required to increase the length of a metal wire, X , by 0.15%? ang modulus for metal of wire, $X = 1.2 \times 10^{11} \text{ N m}^{-2}$) | | | | | [3 marks] | | | (c) | (i) | If the cross-sectional area of the wire is 2.0 mm ² , calculate the tension needed for this extension. | | | | | [2 marks] | | | | (ii) | Calculate the work done during the extension of the wire if the wire is 1 metre long. | | | | | | | | | | [2 marks] | | . (a) | Desci | ribe the mechanisms of the conduction of thermal energy in | |-------|--------|---| | | (i) | a metal bar | | | | [2 marks] | | | (ii) | a piece of wood. | | (b) | Comp | [1 mark] pare the approaches at determining thermal conductivity for good and bad thermal actors. | | | | | | | | [5 marks] | | (c) | heated | monstrate different conductivities of materials, bars of similar dimensions are l. What other characteristics of the bars, or the materials from which they are may affect these results? | | | | | | | | [2 marks] | **END OF TEST**