

FORM TP 21228

MAY/JUNE 2001

CARIBBEAN EXAMINATIONS COUNCIL

ADVANCED PROFICIENCY EXAMINATION

PHYSICS

UNIT 02 - Paper 01

1 hour 45 minutes

READ THE FOLLOWING INSTRUCTIONS CAREFULLY

- 1. This paper consists of **NINE** questions. Candidates must attempt **ALL** questions.
- 2. Candidates MUST write in this answer booklet and all working MUST be clearly shown.

1.	(a)	Coulomb established the fundamental law of electric force between two stationary,
		charged particles.

	 W-18-18-18-1-1	-	
And the second of the second o		······	
1 100	 		
	-	[3 m	ıar

[1 mark]

(c) Figure 1 shows three points charges located at the corners of a triangle where $Q_1 = Q_3 = 5 \mu C$, $Q_2 = -2 \mu C$ and r = 10 cm.

Figure 1

(i) Locate on the diagram the forces F_1 and F_2 acting on Q_3 due to Q_1 and Q_2 respectively. [1 mark]

(b)

(ii)	Calculate a value for F ₁ .	
		[2 marks]
(iii)	Calculate a value for F ₂ .	
		[1 mark]
(iv)	Hence calculate the magnitude of the resultant force acting on Q_3 .	
	•	
		[2 marks]
	Total	10 marks

2. (a) A charged particle, q, moves anticlockwise in a magnetic field which acts at right angles to the velocity of the charge. (See Figure 2.)

Figure 2

Indicate on the diagram the direction of the

(i)	velocity of the charged particle, v	[1 mark]
(ii)	magnetic force acting on the charge particle, F.	[1 mark]
Expla	in why the magnetic field does not affect the kinetic energy o	f the charged particle.
		[4 marks]

Calcu	late the
(i)	orbital speed
	[3 marks]
(ii)	period of revolution of the electron.
	[1 mark]
	Total 10 marks

_		
3.	(a)	Define 'capacitance'.
		[1 mark]
	(b)	Figure 3 shows a parallel plate air capacitor with a constant electric field strength, E, between the plates. The area of the plates is A and d is their distance apart.
		+
		Figure 3
		(i) Write a formula for the capacitance of this capacitor in terms of the area of the plates, A, and, d, their distance apart.
		[1 mark]
		(ii) Hence show that the energy per unit volume, U, of the capacitor is given by $U = \frac{\epsilon_0 E^2}{2}$ where ϵ_0 is the permittivity of free space.

[3 marks]

(i)	capacitance in air
	[2 mark
(ii)	energy per unit volume, U
	[3 mark
	Total 10 mark

(c)

4. (a) Figure 4 shows how the value of an alternating current changes with time.

Figure 4

ind t	he	
(i)	amplitude of the current	
		[1 mark
i)	period	
		[1 mark
i)	frequency.	
		[1 mark
	e waveform represented in Figure 4, write an equating current, I, varies with time, t.	

[2 marks]

(b)

(c) A diode is connected in series with a resistor of resistance, R, to an a.c. supply as shown in Figure 5.

Figure 5

(i) Sketch a graph to show how the current varies as it flows through the resistor.

[2 marks]

- (ii) To smoothen the rectified potential difference across the resistor, a capacitor is placed in the circuit of Figure 5. Indicate on Figure 5 where you would place this capacitor. [1 mark]
- (iii) Show on the graph you sketched in part (c) (i) the effect on the current of placing the capacitor in the circuit. [1 mark]
- (iv) On the sketched graph, label the region where the capacitor is being charged.

 [1 mark]

Total 10 marks

5.	(a)	A transformer is a device that uses mutual induction to change a given a.c. voltage a larger or smaller a.c. voltage. With the aid of a labelled diagram explain the pri of operation of an ideal transformer.	
		\cdot	
			
		[5 m	 narks]
	(b)	An ideal transformer steps up the voltage supplied to it by a generator. The gen	
	(0)	supplies a current of 15 A at 500 V. This voltage is stepped up to 10 000 V and transfalong a transmission cable of total resistance 20 Ω . On reaching the consume voltage is stepped back down to 500 V.	mitted
		Calculate the	
		(i) current in the transmission cable	
			
			**
		[1 m	ark]
		(ii) power lost in the transmission cable	
		[2 m	arks]

i)	percentage power lost in the transmission cable if the voltage was not up.	steppe
	[2	marl

Total 10 marks

6. Figure 6 shows a logic network.

(a) Draw a truth table for this network.

[5 marks]

	Total 10 marks
	[2 marks
(c)	Name and draw the single gate which is equivalent to the network in (i) and (ii).
	[3 mark

		$-1.36 \times 10^{-19} \mathrm{J}$	
	-		
	-	$-2.4 \times 10^{-19} \text{ J}$	
	-	-5.44 x 10 ⁻¹⁹ J	
Ground	d state _	-21.76 x 10 ⁻¹⁹ J	
		Figure 7	
(a)	Why	are the energy values of these levels negative?	
		[2 n	
(b)	(i)	An incoming electron of kinetic energy 20.0×10^{-19} J collides inelastical the hydrogen electron in its ground state. Indicate, by means of vertical on the left side of the energy level diagram, possible transitions of the hydrogen	arr dro
		electron which can occur as a result of this collision. [2 r	na
	(ii)		na
	(ii)	electron which can occur as a result of this collision. [2 r	
(c)	(ii) (i)	electron which can occur as a result of this collision. [2 rewards what becomes of the incident electron?	na:

		(iii)	What becomes of the incident photon?					
				[1 mark]				
		(iv)	State what would be the case in (c)(i) if the photon had a shorter wavelength of 0.95×10^{-7} m.					
				[1				
				[1 mark] Total 10 marks				
8.	(a)	Comp	omplete the following nuclear reactions.					
		(i)	$_{1}^{2}H + _{1}^{3}H = _{2}^{4}He + _{_{_{_{_{_{_{1}}}}}}}$					
		(ii)	${}^{235}_{92}U + {}^{1}_{0}n = {}^{148}_{57}La + {}^{85}_{35}Br + \underline{\hspace{1cm}}$	[2 marks]				
	(b)	Using	the given masses below					
		Masse	es:					
		$^{2}H =$	$3.345 \times 10^{-27} \text{ kg}$	$^{235}_{92}$ U = 390.173 x 10^{-27} kg				
		•	$5.008 \times 10^{-27} \mathrm{kg}$	$^{148}_{57}\text{La} = 245.565 \times 10^{-27} \text{ kg}$				
		$_{1}^{4}$ He =	$6.647 \times 10^{-27} \mathrm{kg}$	$^{85}_{35}$ Br = 140.960 x 10 ⁻²⁷ kg				
		$_{0}^{1}n =$	$1.673 \times 10^{-27} \text{ kg}$					
		(i)	Calculate the energy released in EA	CH of the reactions give in Part (a).				
				[3 marks]				

	(ii)	Calculate the energy released per unit mass of combining nuclides for EACH of the reactions given in Part (a).					
		[2 marks]					
(c)	(i)	Give ONE problem associated with using reaction (a) (i) as a source of ene					
		[1 mark]					
	(ii)	Give ONE problem associated with using reaction (a) (ii) as a source of energy.					
		[1 mark]					
	(iii)	How can the second reaction be controlled?					
		[1 mark]					

Total 10 marks

9. (a) For radioactive decay $A = \lambda N$. Give the name of EACH term and the corresponding S.I. Unit in this relationship.

Term		Name of Term	S.I. Unit		
(i)	A				
(ii)	λ				
(iii)	N				

[3 marks]

(i) Radioactivity decay is a random process yet a strict mathematical law $N = N_0 \exp(-\lambda t)$ applies. State the physical condition which ensures a good though not exact obedience to this law.	(i)	(b)
[1 mark		
(ii) Calculate the number of atoms in 1g of $^{226}_{88}$ Rn.	(ii)	
[1 mark		
(i) A particular radioactive element has half-life of 100 years. Calculate its value of λ .	(i)	(c)
[2 marks]		

After how many years will it take a whole year for this element to emit the s number of particles as it does in one day now?						
1 year = 365 days.						
					•	
 						····
						[3 ma

Total 10 marks

END OF TEST