

FORM TP 21226

MAY/JUNE 2001

CARIBBEAN EXAMINATIONS COUNCIL

ADVANCED PROFICIENCY EXAMINATION

PHYSICS

UNIT 01 - Paper 01

1 hour and 45 minutes

READ THE FOLLOWING INSTRUCTIONS CAREFULLY

- 1. This paper consists of NINE questions. Candidates must attempt **ALL** questions.
- 2. Candidates MUST write in this answer booklet and all working MUST be clearly shown.

d 'random errors'	What do you understand by the terms 'systematic errors' and	(i)	(a)	1.
[2 marks				
	Explain the difference between precision and accuracy.	(ii)		

[3 marks]

(b)

Figure 1

A parachutist falls at his terminal velocity. At the terminal velocity the drag force balances the force due to gravity by the equation

$$mg = \frac{1}{2} \rho A C_d v^2$$

where m is the mass of the man and parachute, ρ is the density of the air, A is the area, C_d is the drag coefficient and v, the terminal velocity.

that	
$20 \pm 1.5 \text{ kg}$	
$.3 \pm 0.1 \text{ kg m}^{-3}$	
$0.00 \pm 0.05 \mathrm{m}^2$	
0.6	
ate the	
terminal velocity	
	[3 marks]
uncertainty associated with the terminal velocity.	[3 marks]
	[2 marks]
	$20 \pm 1.5 \text{ kg}$ $3 \pm 0.1 \text{ kg m}^{-3}$ $.00 \pm 0.05 \text{ m}^2$ 0.6 ate the terminal velocity

2. (a) A body is projected with a velocity v, at an angle, α , to the horizontal ground. Show that the time, t_1 , taken for the body to strike the ground is

$$t_1 = \frac{2 \text{ V Sin}\alpha}{g}$$
[3 marks]

Figure 2

A hammer at the top of a roof slides from rest and falls to the ground at P. The roof is smooth and sloped at an angle of 30° to the horizontal as shown in Figure 2. The roof is 10 m long and its lowest point is 10 m from the ground.

Calculate

lowest point on the roof.	
	· · · · · · · · · · · · · · · · · · ·
	[3 marks
the horizontal component of its velocity when it strikes the ground	
	[1 mark
the vertical component of its velocity when it strikes the ground	
	[2 marks
the angle that the velocity of the hammer makes with the ground.	
	_
	<u> </u>
	[1 mark

3. Figure 3 shows a ball, P, of mass m, moving with speed u, which collides with another ball, Q, of mass M, which is stationary. After the collision, P is found to be moving with speed v, and Q with speed V. (u, v and V are all along the same line.) after collision Figure 3 If the collision is perfectly elastic show that (a) (i) $V = \frac{2m}{(m + M)} . u$ [4 marks] Show also that $v = \frac{(m - M)}{(m + M)} \cdot u$ (ii)

[3 marks]

(b)	(i)	In an elastic collision such as this, if the mass of Q is half that of P and P's velocity before collision is 30 m s ⁻¹ , what would Q's velocity be after the collision?
		[2 marks]
	(ii)	What is the ratio of the masses if the balls move with the same velocity after collision?
		[1 mark]

4. (a) What is meant by the 'phase of a wave'?

Figure 4

(b) Figure 4 shows a displacement-time graph of a certain wave A.

(i) Sketch on the axes in Figure 5 the displacement-time graph of a wave that has a phase difference of $\pi/2$ with the wave A. [2 marks]

Figure 5

(ii) Sketch on the axes in Figure 6 the displacement-time graph of a wave which is in phase with wave A, but has one-half the intensity and twice the frequency of the wave A. [3 marks]

	(c)	ocear	es on the ocean surface are sometimes utilized as a mechanical energy in wave of wavelength 50 m and velocity 5 m s ⁻¹ raises 3 x 10 ³ kg of wight of 2.5 m. Calculate the	
		(i)	gain in potential energy of the water in the wave	
		(ii)	power in the wave.	[2 marks]
		(11)	power in the wave.	
				[2 marks]
			Total	10 marks
	•			
5.	(a)	State	the conditions necessary for total internal reflection of a ray to occur.	
				[2 marks]
	(b)	Identi	fy TWO practical applications where total internal reflection is used.	
				[2 marks]
				[2 marks]

(c) In the communications industry optical fibres are now used to transmit electromagnetic waves which travel down the fibre because the e.m. waves are totally internally reflected.

Figure 7

Figure 7 shows the cross-section of a fibre consisting of a core of refractive index 1.70 and a cladding of refractive index 1.60. The ray, shown entering the fibre from the air, is at the maximum angle of incidence, *i*, for it to be just totally internally reflected by the cladding.

Calculate the angle

(i) x

[3 marks]

(ii) i.

6.	(a)	What is meant by accommodation of the eye?	
			[1 mark]

(b) Figure 8 below shows an eye which focuses light from a distant object on the retina.

Figure 8

(i) Draw a similar diagram to show where light from a NEAR object is focussed if there is no accommodation by the eye.

[2 marks]

(ii) Draw another diagram to show where light from a distant object is focussed if the eye suffers from hypermetropia (long sight).

[2 marks]

(i)	Calculate the focal length of the lens.
(-)	
	[3 mark
(ii)	Determine the power of the lens.
	[2 mark
	Total 10 mark

7. (a) Figure 9 shows a cross section of a Dewar container for cryogenic fluids.

Figure 9

With reference to heat transfer, explain

(1)	why the walls of the Dewar container is made from a fragile material such as glass
(ii)	[1 mark] why the surfaces of the glass are smooth and also silvered
(iii)	[2 marks] the significance of the vacuum section.
	[1 mark] difficulty would be encountered when the cryogenic fluid, liquid nitrogen, is erred into and out of the container?
	[1 mark]

5	The ambient temperature on a cool evening is about 24 °C. Assuming your skin has surface area of 2.0 m ² and that it can be considered to be a black-body emitter, calcula he net rate of heat lost due to radiation from your skin at 36 °C, after active exercises.
(Emmissivity for a black body = 1.)
-	
-	
_	[3 mar
e	The temperature of a furnace is found by measuring with a pyrometer the rate at which energy is radiated through a hole 1.0 cm ² in its wall. If this rate is 6.0 W, and the horan be regarded as a black-body emitter, how hot is the furnace?
_	
-	
_	[2 marl
	Total 10 mark
	Write down an equation for the first law of thermodynamics explaining clearly the symbols used in the equation.
_	
_	
_	[3 mark

8.

	[2 n
	noles of an ideal monotomic gas is cooled from 272 °C to 252 °C. Durings 5000 J of heat flows from the gas. Calculate the
(i)	change in internal energy
	[2]
	[3 n
(ii)	work done by the gas.
(ii)	
(ii)	

9. Figure 10 shows a cross-section of an icebox of thickness Δx , cross-sectional area A, and thermal conductivity k.

Figure 10

(a)	(i)	Write down an equation for the rate of heat flow through the styrofoam.
		[3 marks]
	(ii)	Name the process by which heat is transferred.
		[1 mark]
	(iii)	Indicate on Figure 10 the direction of heat flow.
		[1 mark]
(b)	3.5 kg	rofoam ice-box of surface area $0.68~\text{m}^2$ has walls $0.025~\text{m}$ thick. The box contains g of ice at $0~\text{°C}$ and the temperature on the outside of the walls is $35~\text{°C}$. (Thermal activity of syrofoam = $0.01~\text{Wm}^{-1}~\text{K}^{-1}$).
	Calcu	late the
	(i)	heat required to melt the ice
		[2 marks]

	[2 marks]
akes in hours to melt all the ice in the icebox.	
	[1 mark]
	Total 10 marks

END OF TEST