- 2 -

LIST OF PHYSICAL CONSTANTS

Universal gravitational constant	G	=	$6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$
Acceleration due to gravity	g	=	9.80 m s ⁻²
Radius of the Earth	$R_{\rm E}$	=	6380 km
Mass of the Earth	M_{E}	=	5.98 x 10 ²⁴ kg
Mass of the Moon	M_{M}	=	$7.35 \times 10^{22} \text{ kg}$
1 Atmosphere	Atm	=	1.00 x 10 ⁵ N m ⁻²
Boltzmann's constant	k	=	$1.38 \times 10^{-23} \text{ J K}^{-1}$
Density of water		=	$1.00 \times 10^3 \text{ kg m}^{-3}$
Thermal conductivity of copper		=	$400~W~m^{-1}~K^{-1}$
Specific heat capacity of aluminium		=	910 J kg ⁻¹ K ⁻¹
Specific heat capacity of copper		\equiv	387 J kg ⁻¹ K ⁻¹
Specific heat capacity of water		=	4200 J kg ⁻¹ K ⁻¹
Specific latent heat of fusion of ice)=	$3.34 \times 10^5 \text{ J kg}^{-1}$
Specific latent heat of vaporisation of water		=	$2.26 \times 10^6 \text{ J kg}^{-1}$
Avogadro's number	N_A	=	$6.02 \times 10^{23} \text{ per mole}$
Molar gas constant	R	=	8.31 J K ⁻¹ mol ⁻¹
Stefan-Boltzmann constant	σ	=	5.67 x 10 ⁻⁸ W m ⁻² K ⁻⁴
Speed of light in vacuum	c	=	3.0 x 10 ⁸ m s ⁻¹

1.	(a)	Define $s = u$	e 'acceleration'. From your definition derive the second equat $t + \frac{1}{2}at^2$ stating clearly what the symbols used in the equation rep	ion of motion present.
		7		· · · · · · · · · · · · · · · · · · ·
				2
			V-96000 - 6-4 B	
		_		X
			TE MARGINE 16	
		-		
			Control of the contro	[5 marks]
	(b)		eketer throws a ball vertically upwards and catches it 2.5 s later, ance, calculate the	Neglecting air
		(i)	speed with which the ball leaves his hand	
		(ii)	maximum height to which it rises.	[1 mark]
		77		
			- W Save a	
				[1 mark]

(iii) Hence, sketch a graph showing how the velocity of the ball depends on time during its flight. Indicate on the graph the time at which the maximum height is attained.

[3 marks]

Total 10 marks

2. The Earth, of mass m_E , orbits the Sun, of mass m_S , in a circular orbit of radius r, and angular velocity, ω , as shown in Figure 1 below.

Figure 1

(a) On Figure 1, draw an arrow representing the direction of the force acting on E. Label this arrow F.

Draw a second arrow representing the linear velocity of E and label the second arrow v. [2 marks]

(i)	Write down an expression, in terms of the orbital speed, ν , and the distance of the Earth from the Sun, r , for the magnitude of the centripetal acceleration, a .
	[1 mark]
(ii)	Write down an expression, in terms of m_E , r and v for the magnitude of F.
	[1 mark]
(iii)	Write down an expression, in terms of m_E , m_S , r and G , for the magnitude of the gravitational force exerted by the Sun on the Earth.
	[1 mark]
What	t provides the centripetal force responsible for the centripetal acceleration?
	[1 mark]
The o	distance between the Sun and the Earth is 1.5×10^{11} m and the Earth's orbital d is 3×10^4 m s ⁻¹ . Use this information to calculate the mass of the Sun.
-	
_	10002 100020 10000000
_	[4 marks]
	Total 10 marks

(0)	Find the upthrust, U , acting on the balloon.
(a)	Find the uptiliose, o, acting on the carrotin
	[2 mark
(b)	What is the total mass which has to be moved?
	[2 mark
(c)	Explain why this balloon is able to move upwards through the air.
	[2 mark
(d)	Find the initial acceleration when the balloon is released, assuming that the air resi ance is zero when the velocity is zero.
	ance is zero when the velocity is zero.

State	the law you used in the determination of Part (d).
	[2 marks]
	Total 10 marks
	/ 000000 m
	Figure 2
surfa posit	re 2 shows a mass, m , attached to a light spring, of spring constant 65 N m ⁻¹ . The ce is frictionless. The block is pulled a distance of 10 cm from its equilibrium ion and released. When the block is half-way back to its equilibrium position, late the
(i)	elastic potential energy of the spring
	[3 marks]
(ii)	kinetic energy of the mass.
	[2 marks]
	(2 marks)
	Figur surfa positi calcu (i)

	(e)	State	the law you used in the determination of Part (d).
		-	
		20	
		-	[2 marks]
			Total 10 marks
4.	(a)		/ 888888 m
			Figure 2
		surfa positi	the 2 shows a mass, m , attached to a light spring, of spring constant 65 N m ⁻¹ . The ce is frictionless. The block is pulled a distance of 10 cm from its equilibrium ion and released. When the block is half-way back to its equilibrium position, late the
		(i)	elastic potential energy of the spring
			The second secon
			[3 marks]
		(ii)	kinetic energy of the mass.
			B4400-CT
			[2 marks]

	spring when the kinetic energy is
(i)	maximum
	[1 mark]
(ii)	zero.
	[1 mark]
If the	system is placed on a surface where there is friction, the oscillations become ed.
(i)	What are the effects of damping on the motion?
	[2 marks
(ii)	Sketch a graph showing how the displacement varies with time when the system is damped.
	[1 mark

(a)	(i)	State what is meant by the diffraction of a wave.
		[2 marks]
	(ii)	A beam of monochromatic light is incident on a diffraction grating producing a zero-order, first-order and second-order maxima. Draw a fully labelled diagram to show this experimental procedure, indicating clearly the angles subtended by each order.
		[3 marks]
	(iii)	Write down the equation which can be used to calculate the angle subtended by the n^{th} order maximum.
		[1 mark]
	(a)	(ii)

(i)	wavelength of the light used if the first order maximum occur of 20.5°	to at all aligic
		[2 marks
(ii)	maximum order observable using this wavelength of light.	

6.	(a)	(i)	State the conditions necessary for simple harmonic mot	ion.
				[2 marks]

(ii) Figure 3 below shows a body, of mass m, executing simple harmonic motion.

Figure 3

Show that, for a given displacement, the co are satisfied.	onditions for simple harmonic motion
**	t (A-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
	in the second se
	[2 marks]

(b) (i)

Figure 4

The graph in Figure 4 shows a variation of displacement with time for a body executing simple harmonic motion. By taking the necessary readings from the graph, determine the

		[1 mark
b)	angular velocity.	
		[2 marks
Henc	ee, write down an equation for the motion of this body.	
		[1 mark
Dete	rmine the maximum velocity of the body.	[1 mark
Dete	rmine the maximum velocity of the body.	[1 mark
Dete	rmine the maximum velocity of the body.	[1 mark]
Dete	rmine the maximum velocity of the body.	[1 mark

Total 10 marks

GO ON TO THE NEXT PAGE

002471/CAPE 2000

7.	(a)	In the process of evaporation, molecules escape from a liquid and exis gas. List THREE factors that would increase the rate of evaporation.	t as a vapour or
			effe
			[3 marks]
	(b)	When a liquid evaporates, the temperature of the liquid falls. Explain the basis of the kinetic theory.	is change on the
		-	[2 marks]
	(c)	A portion of frozen soup has a mass of 0.40 kg and is taken from a freez is required to heat the soup to 65.0 °C to prepare it for consumption. Us to calculate the heat energy needed to make the soup ready to serve.	zer at -5.0 °C. It e the data below
			_

			=-300
		Specific heat capacity of frozen soup = $2.00 \times 10^3 \mathrm{J kg^{-1} K^{-1}}$	
		Specific heat capacity of liquid soup = 4.20 x 10 ³ J kg ⁻¹ K ⁻¹	
		Specific latent heat of fusion of soup = 3.30 x 10 ⁵ J kg ⁻¹	
		Melting point of soup $= 0$ °C	[5 marks]

Total 10 marks

8.	(a)	Accord	ding to the kinetic theory, the pressure, p , of an ideal gas comprising N molecules, I of mass m , is given by
			$p = \frac{1}{3} \frac{Nm}{V} < c^2 >.$
		(i)	State the physical quantities represented by Nm and Nm/V in the equation above.
			[2 marks]
		(ii)	Write down what the symbol, $< c^2 >$ represents, and show how it would be calculated for five gas molecules travelling at speeds v_I , v_2 , v_3 , v_4 and v_5 .
		(iii)	Using the equation for the pressure of an ideal gas in (a) above, show that the total kinetic energy of the molecules of an ideal gas is given by the expression $E_k = \frac{3}{2}pV$
			[1 mark]
	(b)		gas molecules, EACH of mass 2.0 x 10^{-26} kg, have speeds $200,300,400,500$ and n s ⁻¹ respectively. Find
		(i)	their mean speed
			[1 mark]
002	2471/CA	PE 2000	GO ON TO THE NEXT PAGE

[2 marks] [2 marks] Total 10 marks Total 10 marks Figure 5 Figure 5 above shows a column of Liquid, <i>l</i> , of height, <i>h</i> , and cross-sectional area, <i>A</i> . Use the definitions for density and pressure to derive an expression for the pressure due to a liquid of density, ρ.	(ii)	their mean square speed
[2 marks] Total 10 marks Figure 5 Figure 5 above shows a column of Liquid, <i>l</i> , of height, <i>h</i> , and cross-sectional area, <i>A</i> . Use the definitions for density and pressure to derive an expression for the pressure due to a liquid of density, ρ.		
[2 marks] Total 10 marks Figure 5 Figure 5 above shows a column of Liquid, <i>l</i> , of height, <i>h</i> , and cross-sectional area, <i>A</i> . Use the definitions for density and pressure to derive an expression for the pressure due to a liquid of density, ρ.		
Total 10 marks Total 10 marks Figure 5 Figure 5 above shows a column of Liquid, <i>l</i> , of height, <i>h</i> , and cross-sectional area, <i>A</i> . Use the definitions for density and pressure to derive an expression for the pressure due to a liquid of density, ρ.		[2 marks
Figure 5 Figure 5 above shows a column of Liquid, <i>l</i> , of height, <i>h</i> , and cross-sectional area, <i>A</i> Use the definitions for density and pressure to derive an expression for the pressure due to a liquid of density, ρ.	(iii)	the total kinetic energy of the five gas molecules.
Figure 5 Figure 5 above shows a column of Liquid, <i>l</i> , of height, <i>h</i> , and cross-sectional area, <i>A</i> Use the definitions for density and pressure to derive an expression for the pressure due to a liquid of density, ρ.		
Figure 5 Figure 5 above shows a column of Liquid, <i>l</i> , of height, <i>h</i> , and cross-sectional area, <i>A</i> Use the definitions for density and pressure to derive an expression for the pressure due to a liquid of density, ρ.		[2 marks
Figure 5 Figure 5 above shows a column of Liquid, l , of height, h , and cross-sectional area, A Use the definitions for density and pressure to derive an expression for the pressure due to a liquid of density, ρ .		Total 10 marks
Figure 5 above shows a column of Liquid, l , of height, h , and cross-sectional area, A Use the definitions for density and pressure to derive an expression for the pressure due to a liquid of density, ρ .		\bigvee_{A}
Use the definitions for density and pressure to derive an expression for the pressure due to a liquid of density, ρ.		Figure 5
	Use th	e definitions for density and pressure to derive an expression for the pressure due
		Au 000 12
		A SOLUTION OF THE STATE OF THE
[5 marks]		

9.

(i)	Assuming the density of sea water is $1.03 \times 10^3 \text{ kg m}^{-3}$ and the submarine is horizontal in the water, find the total weight of water on top of the submarine at the depth of 50.0 m .
	[2 mark
(ii)	What would be the total pressure acting on the submarine at this depth? Express your answer in atmospheres.
(ii)	What would be the total pressure acting on the submarine at this depth? Express your answer in atmospheres. [3 mark]

END OF TEST