AS COMPETITION PAPER 2008 SOLUTIONS | Total | |---------| | Mark/50 | | | #### Marking The mark scheme is prescriptive, but markers must make some allowances for alternative answers. A value quoted at the end of a section must have the units included. Candidates lose a mark the first time that they fail to include a unit, but not on subsequent occasions except where it is a specific part of the question. Significant figures are related to the number of figures given in the question. A single mark is lost the first time that there is a gross inconsistency (more than 2 sf out) in the final answer to a section. One question does require many sf and that is noted in the mark scheme. Ecf: this is allowed in numerical sections provided that unreasonable answers are not being obtained. Ecf can not be carried through for more than one section after the first mistake (e.g. a mistake in section (d) can be carried through into section (e) but not then used in section (f)). This applies to Question 11 in particular. ## Section A: Multiple Choice - 1. **D** - 2. **A** - 3. **A** - 4. **C** - 5. **B** - 6. **D** - 7. **C** - 1. Half of the hole diameter will reduce the power through the hole to ¼. This power is spread out to twice the width (not uniformly but we are looking at the centre of the beam before and after) and so to four times the area. Hence 1/16 of the power on the same area at the centre compared with previously. - 2. A full earth will be seen when the sun, moon and earth are lined up, which is when you would see a new moon from the earth. The next occasion that this occurs is when the moon has gone through a whole cycle, and so the periods for the phases observed from each body are the same. - 3. From 0 to t₁ there is a constant acceleration, which would require a constant force. Added to this there is a force proportional to v. After t₁ there is a constant frictional force alone (no acceleration after t₁). Thus A or C. It is A because the constant force of the acceleration adds to the 0 to t₁ force line (from where it would link the origin to the horizontal force line after t₁). - 4. If the room has an identical shape, ten times the length will mean 1000 times the volume and 100 times the surface area. Other factors remain the same. - 5. From the fishes eye to the rim of the tank makes an angle of 48° with the vertical. The emerging ray is horizontal (which is the requirement to see the horizon). Hence the depth of the fish is, d x tan $48^{\circ} = 15.0$, giving d. - 6. Friction will produce heat energy and so the total energy will not be PE + KE (or all of the PE will not turn into KE). At a constant velocity there is no gain of KE. On a horizontal surface there is no change of PE. Falling freely, the PE turns solely into KE. - 7. A quick mental check can be made on a couple of the data points and then confirmed with a calculator. Laborious working through all of the possibilities for all four data points is not necessary. #### **Section B: Written Answers** #### **Question 8.** A fibre optic cable is used to transmit signals. When a short pulse of light passes along a fibre, it spreads out, which limits the rate of transmission of signals down the fibre. a) Suggest two reasons why the pulse of light might spread out. Variation of refractive index/ speed of light/dispersion with colour/wavelength (of light) ✓ Reflections off the sides/ zigzag path taken by some rays/ some rays take a longer distance to travel (not time, as this is the question) b) A fibre of length 10.0 km is illuminated with red light from an led which is turned on and off repeatedly for equal amounts of time. The speed of the pulse of light ranges from 1.95 x 10⁸ m/s to 2.05 x 10⁸ m/s. Calculate the range of times taken for the pulse to travel down the fibre optic. $$t_{long} = 10^4 / 1.95 \times 10^8 = 5.13 \times 10^4 \text{ s}$$ (2 or 3 sf) $t_{short} = 10^4 / 2.05 \times 10^8 = 4.88 \times 10^{-4} \text{ s}$ (both t needed) c) What is the maximum frequency of the led so that the pulses arrive without overlapping? Difference in times is 0.25×10^{-4} s This corresponds to the pulse being spread out to fill the space So period of signal is 2 x difference Frequency = 1/period =1/0.5 x 10^{-4} = 20 kHz [3] d) The wavelength the LED emits is 1310 nm in air. Calculate the frequency of the light used. $(c = 3.0 \times 10^8 \text{ m/s})$ $f = 2.3 \times 10^{14} \text{ Hz}$ | | IR | (answer on | ly)✓ | [2] | |---|--|-------------------|---|--------------| | | | | | /9 | | | | | | /9 | | | | | | | | uestion 9. | | | | | | | oom tempera
hydrogen mo
ve molecular | ature. In a ballo | on filled with I have the same blecule = 29 | ydrogen gas | | a) Calculate the average speed of | | n molecule. | | | | $\frac{1}{2}m_{air}v_{air}^2=\frac{1}{2}$ | $m_H^2 v_H^2$ | ✓ | | | | $v_H = v_{air} \sqrt{\frac{m_{air}}{m_H}} = 500.$ | $\sqrt{\frac{29}{2}}$ | ✓ | correct sub | stitution | | $v_H = 1900 m/s$ | (2 or 3 sf) | ✓ | | [3] | | | | | | [2] | | b) What is the average velocity | of the hydro | gen molecules | in the balloon? | | | | zero | ✓ | | ··· | | | | | | [1] | | c) Comment on how the speed of | of sound in h | nydrogen would | compare with | the speed of | | d) | If the mass of all the molecuthe sum of the kinetic energ | les of the hydrogo
ies of all the mole | en gas in the | ne balloon is 1.0 g, o
e balloon. | calculate | |--------|--|---|--|--|-------------------------| | | $\frac{1}{2}mv^2 = \frac{1}{2} \times 1$ | $10^{-3} \times 1900^2$ | | | | | | =1810 | | ✓ | | | | | | | | | [1] | | e) | If a balloon was filled with
temperature, how would the
with the value calculated in | sum of the kineti | c energies | olecules at the same
of the air molecules | • | | | Air and hydrogen molecule | s have the same av | ke at the | same temperature (| given) | | | 1810 J or same total | l ke | √_ | | [1] | | f) | · | out was similar in
ength, to what heig
e that g is independ | size and m
ght would i
dent of hei | tass to the earth and the molecule go? ght) | had the | | | | $\frac{1}{2}mv^2 = mgh$ | ✓ | (or without m) | | | | $h = \frac{1}{2}$ | $\frac{v^2}{2g} = \frac{1900^2}{2 \times 9.8} = 184$ | km ✓ | (or without m) | | | | | | | | [2] | | g) | How does this height, calcumolecule directed upwards answer is not required) | lated in part (f), of from the planet in | ompare was an identic | ith the height reache
cal manner? (A num | ed by an air
perical | | The he | eight reached by the air mole | cule is (much) les | ss 🗸 | (not slightly le | ss) | | must | be clear which molecule is o | liscussed) | | | | | | (h α v ² as the mass of the r | nolecule cancels o | <u>ut)</u> | and the second s | [1] | | h) | This height is not enough thydrogen molecules at the | o get away from the | he earth's | gravitational pull, as | nd yet the
m the | | | earth's gravitational field. | Explain how this | could be so |). | | | | The molecules in a gas have | ve a range of speed | İs | ✓ | | | So th | e faster ones have more ke a | nd can gain more | pe (owtte |) | [2] | ## Question 10. | a) | | given by . | r - r 1. Show that | |-------------|---|---------------------------------------|--| | | this may also be expressed as $P = I^2 R$ and $P = \frac{V^2}{R}$. | | | | | R=V/I must be explicitly made clear for a mark | | | | | | | [1] | | b) | A student goes out to purchase an electric heater for his get more heat, he should purchase a heater with a high r but the student thinks that a low resistance would be best who is correct. | esistance | because $P = I^2 R$, | | | | | | | | Fixed V applied to the heater | | | | | (so use V ² /R) and hence low R needed | ✓ | | | | | | [2] | | c) | Copper is a better conductor than iron. Equal lengths of same diameter, are connected first in parallel, and then it is applied across the ends of each arrangement in turn, a increased from a small value until, in each case, one of Explain this, and state which wire will glow first in each Case 1 Case 2 | in series.
and the p.
the wires | A potential difference d. is gradually | | | Case 1: same pd across each wire | | | | | So V ² /R implies smaller R for a larger power | / | EITHER THIS | | · , | So copper glows first (lower R value) | ✓ | (needed) | | | Case 2: same current through each wire | | | | | So I ² R implies larger R for a larger power | | OR THIS | | | So iron glows first (larger R value) | ✓ | (needed) [4] | | d) | A surge suppressor is a device for preventing sudden excessive flows of current in a | |----|---| | / | circuit. It is made of a material whose conducting properties are such that the current | | | flowing through it is directly proportional to the fourth power of the potential | | | difference across it. If the suppressor dissipates energy at a rate of 6 W when the | | | applied potential difference is 230 V, what is the power dissipated when the potential | | | rises to 1200 V? | | Expression $I = kV^4$ may be implicit in calculate | tion ✓ | | |---|-------------------------------|-----------| | $P = VI = kV^5$ | √ | | | So $6 = k \times 230^5 \rightarrow k = 9.3 \times 10^{-12} \text{ W/V}^5$ | or $P_{1200} = 6 \times (12)$ | 200/230)5 | | $P_{1200} = 23 \text{ kW}$ | ✓ | [3] | /10 ### Question 11. When a metal rod is heated, it expands uniformly with temperature. The coefficient of linear thermal expansivity, α (alpha), is equal to the fractional increase in length per unit temperature rise. If a rod of length ℓ expands by an amount $\Delta \ell$ when the temperature rises by $\Delta \theta$ in ${}^{\circ}C$, α is given by, $$\alpha = \frac{\Delta \ell}{\ell} \frac{1}{\Delta \theta}$$ | $\alpha = \frac{1}{\ell} \frac{1}{\Delta \theta}$ | | |--|------| | a) What are the units of α ? | | |
oC-1 ✓ [1] | | | A pendulum clock has a metal pendulum. The period of oscillation, T , of the pendulum given by, | n is | |
$T=2\pi\sqrt{ rac{\ell}{g}}$ | | | where ℓ is the length of the pendulum and g is the acceleration due to gravity. The per of the pendulum is exactly 1 second when the room temperature is such that the clock gives the correct time. On days when the room temperature is 15.0 °C the clock runs 5 fast per day. When the room temperature is 30.0 °C, the clock runs 10s slow per day. | | | b) When the clock gives the correct time, how many oscillations will occur in a day's | ? | |
24 x 3600 = 86,400 ✓ | _ | |
[1] | | | c) For the two temperatures quoted, write down the number of oscillations that would occur in one day. | d | |
At 15 °C 86,405 ✓ | _ | | At 30 °C 86,390 ✓ [2] | | | d) Calculate the periods of the pendulum, T_{15} , and | $1 T_{30}$, at the two temperatures. | | |--|---------------------------------------|----| | $T_{15} = 1.000058 \text{ s} (6 \text{ or } 7 \text{ sf})$ | ✓ | | | $T_{30} = 0.999884 \text{ s}$ | ✓ | | | | | [: | | e) Calculate the corresponding values of lengths, | | | | | | | | $\ell_{15} = 0.248\ 266\ \mathrm{m}$ | | | | $\ell_{30} = 0.248 \ 179 \ \mathrm{m}$ | · | | | | | | | f) Calculate the value of α for the metal of the pe | endulum. | | | Δℓ = 0.000 087 m | ✓ | | | $\alpha = \frac{\Delta \ell}{0.248} \times \frac{1}{15}$ | ✓ | | | $= 2.34 \times 10^{-5} {}^{\circ}\text{C}^{-1} (2 \text{ or } 3 \text{ sf})$ | ✓ | | | | | | /11