AS PHYSICS COMPETITION 2007

ONE HOUR PHYSICS COMPETITION PAPER

FRIDAY 9th MARCH 2007

We hope teachers will set and mark the enclosed paper for their A S students, or equivalent students in Scotland. Xerox copies of the paper should be produced for your students. The solutions and marking scheme are attached. It is intended that the paper should be taken on Friday 9 th March. However if this is not possible, any date during the period $5^{th} - 9$ th March will be acceptable. Scripts must be posted in sufficient time to arrive by first class post on Monday 17 th March at the Olympiad Office at the University of Kent at Canterbury. Any scripts arriving after this date cannot be considered for an award. There is no charge for entering the competition.

After the scripts have been marked please send those scripts with marks of 35 or more, the scripts of the Gold Medal Certificate students, to be considered for the award of a book prize, together with the entry form ,which is on the following page, and request for certificates to:

Dr Cyril Isenberg
A S Physics Competition
Electronics Laboratory
University of Kent
Canterbury, Kent CT2 7NT

We will invite the five outstanding Gold Medallists, together with their teachers, to the AS Physics Competition Presentation Ceremony at The Royal Society in London on Thursday 26 April 2007. Prizes and certificates will be despatched to all medallists, who are not amongst those invited to the Presentation, in May. Teachers are requested to complete the certificates, according to the scheme specified on the last page, and present them to their students.

AS PHYSICS COMPETITION 2007

ENTRY FORM

		<u> </u>	
			
			
			 -
	and the state of t		
ENTRIES			
		arks (first name follo	wed
TOTAL	NAME	TOTAL	
MARK		MARK	
eturn the request fo	or certificates at the	end of this booklet.	
	ma in this A.C. Dhyssia	a Compatition manage	nd
		s Competition paper a	IIG
	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	eturn the request for the sconcerning question	ENTRIES of Gold Medallists with 35 or more magered for the award of a book prize. TOTAL NAME MARK eturn the request for certificates at the COMMENTS	eturn the request for certificates at the end of this booklet. COMMENTS s concerning questions in this A S Physics Competition paper a

2007 AS PHYSICS COMPETITION CERTIFICATES

All Participating students will receive a certificate. They will be awarded Gold, Silver, Bronze and Participation Medal Certificates, based on their marks, according to the scheme below:

Medal Certificate	Gold	Silver	Bronze	Participation
Mark Range	50 - 35	34 – 25	24 - 15	14-0
No. of certs. requested				

Total Num	ber of Entries
NAME OF TEACHER	
NAME OF SCHOOL	
ADDRESS OF SCHOOL	
Please return to:	
Dr Cyril Is	senberg

A S Physics Competition

British Physics Olympiad Office

Electronics Laboratory

University of Kent

Canterbury, Kent CT2 7NT

AS COMPETITION PAPER 2007

Total Mark/50

SOLUTIONS

Section A: Multiple Choice

There is only one mark for each correct answer.

- 1. **C**
- 2. **D**
- 3. **B**
- 4. **B**
- 5. **B**
- 6. A
- 7. **D**
- 8. **C**

2007 IOP SCHOOLS LECTURE TOUR SHEDDING LIGHT ON THE SCIENCE OF COLOUR

Dr Pete Vukusic University of Exeter

Have you any bright ideas about light? About what it really is? How it flows? How one colour is different from another? Better still, can you say how the coloured wings of a butterfly are helping create car paint and make-up that can change colour? These are just some of the questions that will be answered by *Light Fantastic: the Science of Colour*, the Institute of Physics 2007 Schools and Colleges' lecture. This free, hour-long interactive talk is aimed at 14-16 year old schoolchildren and is presented this year by physicist Dr Pete Vukusic at the [venue] in [city] on [date].

A full schedule of lectures is available at: http://www.iop.org/activity/education/Events/Schools and College %20Lecture Series/page 9420.html

The Institute of Physics is a scientific membership organisation devoted to increasing the understanding and application of physics. It has an extensive worldwide membership (currently over 35,000) and is a leading communicator of physics with all audiences from specialists through government to the general public. Its publishing company, IOP Publishing, is a world leader in scientific publishing and the electronic dissemination of physics.

Section B: Written Answer

Question 9.

A mass M is attached to the end of a horizontal spring. The mass is pulled to the right, 8 cm from its rest position. It is then released so that the mass oscillates to the left and right, with the system gradually losing energy over many cycles.

a) State the energy changes that take place over one complete cycle as the mass moves to the left and then back to the right.

Elastic pe \rightarrow ke \rightarrow elastic pe \rightarrow ke	→ elastic pe		
for correct energy change	es	✓	
for 1 cycle of changes onl	ly – no more and no less	✓	[2]
b) The energy stored in a stretched sthe spring. If after some time, the fraction of the initial energy has the samplitude reduces from 8 cm to 1 cm	e amplitude of the oscillation been lost? Show your workin	is reduced t	
Energy reduces from 64 to 1 unit	√		· · · · · ·
So 1/64 left or 63/64 lost	✓ for either answ	ver	[2]
c) We will need to use a concept that the half-life of a radioactive subs		ity. State wł	at is meant b
The time taken for half of the (radioac	ctive) nuclei (allow material	l) to decay	√
			·
		· · · · · · · · · · · · · · · · · · ·	[1]

d)	Now we shall apply this concept to the loss amplitude decays away in the same manner many half-lives have passed for the amplitude.	as radi	loactive decay (expon	
	$8 \text{ cm} \rightarrow 4 \text{ cm} \rightarrow 2 \text{ cm} \rightarrow 1 \text{ cm}$	✓		
	3 half-lives	✓		[2]
e)	The period of oscillation does not depend usame for both large and small amplitudes. Thalf-life for the amplitude loss is 5 seconds time the amplitude has dropped down to 10	The per	iod of oscillation is 0	.5 seconds. The
	10 oscillations per half-life	✓		
	30 oscillations in 3 half lives	✓	allow ecf	[2]
f)	The energy is also dissipated away expone for the energy lost, how many energy loss reduced to 1 cm?			
	$64 \rightarrow 32 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$	✓_	No ecf allowed	
	6 half-lives	✓		
				[2]

Question 10.

a)	At the earth's surface, the radiant power received from the Sun normally is 1.3 x 10 ³ W
per	square metre. The power radiated by the Sun is the same everywhere over the Sun's
surf	ace. If the Earth orbits at a distance of 1.5 x 10 ¹¹ m from the Sun, calculate the total
ener	rgy radiated away by the Sun each second. (It may be useful to know that the surface area
of a	sphere is $4\pi r^2$).

Total power	$= 1.3 \times 10^3 \times area W$	√	
	$= 1.3 \times 10^3 \times 4 \times \pi \times r^2 \text{ W}$		
	$=3.7 \times 10^{26} \mathrm{W} = 4 \times 10^{26} \mathrm{W}$	✓	[2]

b) Although you may not have studied it yet, Einstein produced a famous equation relating mass and energy which we shall use, $E = mc^2$, where E is energy in joules, m is mass in kg, c is the velocity of light in a vacuum ($c = 3x10^8$ m/s). Using your answer to part (a), calculate the mass loss of the Sun due to the energy being radiated away each second.

$3.7 \times 10^{26} \div 9 \times$	$10^{16} = 4.1 \times 10^9 \text{ kg (/s)}$			
	$= 4 \times 10^9 \text{ kg (/s)}$	✓	allow e.c.f.	
	= 4 million tonnes /s			[1]

c) If the mass of the Sun is $2x10^{30}$ kg, what is the percentage of the Sun's mass that is lost by radiation each year?

$\frac{4 \times 10^9}{2 \times 10^{30}} \times 365 \times 2$	4 x 3600 x 100%	allow e.c.f.
2 x 10	✓ for 365 x 24 x 3600 sec	conds in a year
$= 6.3 \times 10^{-12} \%$	✓	
		[2]

d) Assuming that this rate remains constant, what is the percentage loss of mass of the sun since it was formed, five thousand million years ago?

6 x 10 ⁻¹² % x 5 x 10 ⁹	✓	allow e.c.f.	
= 0.03 %	✓		
		[2]	

Question 11.

The transformer, shown in fig. 9, outputs power at 415 V, along a copper cable 50 m in length, to an electrical machine. The total resistance of the copper conductor (100 m there and back) is $0.0493~\Omega$ at an operating temperature of 60°C. The machine takes a current of 200 A.

Power = V x I	✓	
= 415 x 200		
= 83,000 W	✓	[2]

b) What is (i) the power loss in the cable, and (ii) what percentage is this of the total power supplied?

Power in cable	$= I^2 R$	√
	$= 200^2 \times 0.0493$	
MARK SEASON	= 1972 W = 1.9 kW	<u> </u>
	$1.9 x \ 100\% \ = \ 2.3 \ x \ 10^{-3} \ \%$	√
8:	3,000	[3]

c) Often the conductor size is chosen not on the basis of the steady current required, but on the short circuit current that might occur. If in our wiring, a short circuit occurred at the machine end of the cable, a current of 6000 A could be expected. Explain why this current is significantly less than that calculated from the 415 V supply and the 0.0493 Ω resistance of the cable.

The secondary of the transformer also has some resistance	✓	
Resistance at the short circuit connection	✓	
Do not accept cable heats up		[2]

d) If the circuit breaker p heat energy generated does not change signif	in this short time interva	before it breaks the circuit, calculate that. Assume that the resistance of the wi
	•	✓
81/	= 415 x 6000 x 0.4	
· · · · · · · · · · · · · · · · · · ·	= 996 kJ	✓
		[2]
e) The heat energy requisive specific heat capacity formula,	red to raise the temperate of copper. It has the value	ure of 1kg of copper by 1°C is called the use is 385 Jkg ⁻¹ °C ⁻¹ . We can use a simple
heat energy	supplied = mass x specif	ic heat capacity x temperature rise
in order to determine the surroundings. Calculate	he temperature rise of th	ne copper cable, assuming no heat loss to
	of copper in the 50 m c cross sectional area = 50 density of copper = 89 ity x volume	
	x 50 x 50 x 10 ⁻⁶	<u></u>
		[2]
(ii) Calculate the final 60°C.	temperature of the cable	e after 0.4s, if its initial temperature is
996,000	$0 = 22.4 \times 385 \times \text{temper}$	ature rise ✓ allow e.c.f.
Hence temper	ature rise = 115°C	
And so final to	emperature = 175 °C	
		the correct temperature rise [2]
		["]

Question 12.

A single uniform underground cable linking A to B, 50 km long, has a fault in it at distance d km from end A. This is caused by a break in the insulation at X so that there is a flow of current through a fixed resistance R into the ground. The ground can be taken to be a very low resistance conductor. Potential differences are all measured with respect to the ground, which is taken to be at 0 V.

In order to locate the fault, the following procedure is used. A potential difference of 200 V is applied to end A of the cable. End B is insulated from the ground, and it is measured to be at a potential of 40 V.

(ii) Having measured 40 V at end B initially been required at end A for the second management of	y, why is it that	
(ii) Having measured 40 V at end B initially been required at end A for the second m	y, why is it that	
So that X is at the same potential		40 V I
The state of the s	✓	
and then the same current flows into the ground through	ıR 🗸	
ad the same currents will therefore flow along AX and BX - see	e part (e) (✓))	[2]
d) What is the potential gradient along the cable from B to X?		
(300-40) = 260	✓	
$\frac{(300-40)}{(50-d)} = \frac{260}{(50-d)}$		[1]
(i) Explain why this is true Because the same currents flowed along AX and BX	√	
	y gth (√)	[2]
(ii) From the two potential gradients that yo the value of d.		
$\underline{160} = \underline{260} \qquad \underline{260} \ d = 50 \times 160 - 160 \ d$		
$d \qquad (50-d)$ Hence $d=19 \text{ km}$	✓	

2007 BRITISH ASSOCIATION MEETING

UNIVERSITY OF YORK

100 PHYSICS SCHOLARSHIPS

This year the annual meeting of the British Association for the Advancement of Science will take place at the University of York from 9-15 September. On Friday 14 September the Physics and Astronomy Section has devoted the day to popular lectures on particle physics and astronomy.

100 PPARC scholarships worth £40 each for A level students who do not live in York, and £25 for those students residing in York, are available. They will be awarded on a 'first come first served' basis. Students will be required to write a 300 word report of their day at the Festival . Applicants should write or email

Dr C. Isenberg
BA Treasurer
Physics and Astronomy Section
Electronics Laboratory
University of Kent
Canterbury, Kent CT2 7NT
Email: C.Isenberg@kent.ac.uk
Tel. 01227 823768

PHYSICS SUMMER SCHOOL

Senior Physics Challenge

This Cambridge University programme, to further skills in Physics and to prepare school students for the transition to University Physics, holds a yearly Summer School in Cambridge. In 2007 it will most likely be from Sunday 1 July to Thursday 5 July. It is for students who will just completing their AS year at school. Attendance is by application and recommendation from the student's school. Further details will appear in mid February – look on http://www-spc.phy.cam.ac.uk/. This website has details of last year's School and will be a good guide to this year's.

Professor Mark Warner Anson Cheung Directors, SPC