
BRITISH MATHEMATICAL OLYMPIAD

Round 2 : Thursday, 25 February 1999

Time allowed Three and a half hours.

Each question is worth 10 marks.

Instructions • Full written solutions - not just answers - are
required, with complete proofs of any assertions
you may make. Marks awarded will depend on the
clarity of your mathematical presentation. Work
in rough first, and then draft your final version
carefully before writing up your best attempt.

Rough work should be handed in, but should be
clearly marked.

• One or two complete solutions will gain far more
credit than partial attempts at all four problems.

• The use of rulers and compasses is allowed, but
calculators and protractors are forbidden.

• Staple all the pages neatly together in the top left
hand corner, with questions 1,2,3,4 in order, and
the cover sheet at the front.

In early March, twenty students will be invited
to attend the training session to be held at
Trinity College, Cambridge (8-11 April). On the
final morning of the training session, students sit
a paper with just 3 Olympiad-style problems. The
UK Team - six members plus one reserve - for this
summer’s International Mathematical Olympiad
(to be held in Bucharest, Romania, 13-22 July)
will be chosen immediately thereafter. Those
selected will be expected to participate in further
correspondence work between April and July, and
to attend a short residential session (3-7 July) in
Birmingham before leaving for Bucharest.

Do not turn over until told to do so.

BRITISH MATHEMATICAL OLYMPIAD

1. For each positive integer n, let Sn denote the set consisting of
the first n natural numbers, that is

Sn = {1, 2, 3, 4, . . . , n − 1, n}.

(i) For which values of n is it possible to express Sn as
the union of two non-empty disjoint subsets so that the
elements in the two subsets have equal sums?

(ii) For which values of n is it possible to express Sn as the
union of three non-empty disjoint subsets so that the
elements in the three subsets have equal sums?

2. Let ABCDEF be a hexagon (which may not be regular),
which circumscribes a circle S. (That is, S is tangent to
each of the six sides of the hexagon.) The circle S touches
AB,CD,EF at their midpoints P,Q,R respectively. Let
X,Y,Z be the points of contact of S with BC,DE,FA

respectively. Prove that PY,QZ,RX are concurrent.

3. Non-negative real numbers p, q and r satisfy p + q + r = 1.
Prove that

7(pq + qr + rp) ≤ 2 + 9pqr.

4. Consider all numbers of the form 3n2 + n + 1, where n is a
positive integer.

(i) How small can the sum of the digits (in base 10) of such
a number be?

(ii) Can such a number have the sum of its digits (in base 10)
equal to 1999?


