
BRITISH MATHEMATICAL OLYMPIAD

Round 2 : Thursday, 26 February 1998

Time allowed Three and a half hours.

Each question is worth 10 marks.

Instructions • Full written solutions - not just answers - are
required, with complete proofs of any assertions
you may make. Marks awarded will depend on the
clarity of your mathematical presentation. Work
in rough first, and then draft your final version
carefully before writing up your best attempt.

Rough work should be handed in, but should be
clearly marked.

• One or two complete solutions will gain far more
credit than partial attempts at all four problems.

• The use of rulers and compasses is allowed, but
calculators and protractors are forbidden.

• Staple all the pages neatly together in the top left
hand corner, with questions 1,2,3,4 in order, and
the cover sheet at the front.

In early March, twenty students will be invited
to attend the training session to be held at
Trinity College, Cambridge (2-5 April). On the
final morning of the training session, students sit
a paper with just 3 Olympiad-style problems. The
UK Team - six members plus one reserve - for this
summer’s International Mathematical Olympiad
(to be held in Taiwan, 13-21 July) will be chosen
immediately thereafter. Those selected will be
expected to participate in further correspondence
work between April and July, and to attend a
short residential session in early July before leaving
for Taiwan.

Do not turn over until told to do so.

BRITISH MATHEMATICAL OLYMPIAD

1. A booking office at a railway station sells tickets to 200
destinations. One day, tickets were issued to 3800 passengers.
Show that

(i) there are (at least) 6 destinations at which the passenger
arrival numbers are the same;

(ii) the statement in (i) becomes false if ‘6’ is replaced by ‘7’.

2. A triangle ABC has 6 BAC > 6 BCA. A line AP is drawn
so that 6 PAC = 6 BCA where P is inside the triangle.
A point Q outside the triangle is constructed so that PQ
is parallel to AB, and BQ is parallel to AC. R is the
point on BC (separated from Q by the line AP ) such that
6 PRQ = 6 BCA.

Prove that the circumcircle of ABC touches the circumcircle
of PQR.

3. Suppose x, y, z are positive integers satisfying the equation
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and let h be the highest common factor of x, y, z.

Prove that hxyz is a perfect square.

Prove also that h(y − x) is a perfect square.

4. Find a solution of the simultaneous equations

xy + yz + zx = 12

xyz = 2 + x + y + z

in which all of x, y, z are positive, and prove that it is the only
such solution.

Show that a solution exists in which x, y, z are real and
distinct.


