
BRITISH MATHEMATICAL OLYMPIAD

Round 2 : Thursday, 16 February 1995

Time allowed Three and a half hours.

Each question is worth 10 marks.

Instructions • Full written solutions - not just answers - are
required, with complete proofs of any assertions
you may make. Marks awarded will depend on the
clarity of your mathematical presentation. Work
in rough first, and then draft your final version
carefully before writing up your best attempt.

Rough work should be handed in, but should be
clearly marked.

• One or two complete solutions will gain far more
credit than partial attempts at all four problems.

• The use of rulers and compasses is allowed, but
calculators and protractors are forbidden.

• Staple all the pages neatly together in the top left
hand corner, with questions 1,2,3,4 in order, and
the cover sheet at the front.

In early March, twenty students will be invited
to attend the training session to be held at
Trinity College, Cambridge (30 March – 2 April).
On the final morning of the training session,
students sit a paper with just 3 Olympiad-style
problems. The UK Team - six members plus
one reserve - for this summer’s International
Mathematical Olympiad (to be held in Toronto,
Canada, 13–23 July) will be chosen immediately
thereafter. Those selected will be expected
to participate in further correspondence work
between April and July, and to attend a
short residential session 2–6 July before leaving
for Canada.

Do not turn over until told to do so.
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1. Find all triples of positive integers (a, b, c) such that
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= 2.

2. Let ABC be a triangle, and D,E, F be the midpoints of
BC,CA,AB, respectively.

Prove that 6 DAC = 6 ABE if, and only if, 6 AFC = 6 ADB.

3. Let a, b, c be real numbers satisfying a < b < c, a + b + c = 6
and ab + bc + ca = 9.

Prove that 0 < a < 1 < b < 3 < c < 4.

4. (a) Determine, with careful explanation, how many ways 2n
people can be paired off to form n teams of 2.

(b) Prove that {(mn)!}2 is divisible by (m!)n+1(n!)m+1 for all
positive integers m,n.


