
 
 

2008 HSC Notes from 
the Marking Centre 

Software Design and Development 
 
 
 



© 2009 Copyright Board of Studies NSW for and on behalf of the Crown in right of the State of New South Wales. 
 
This document contains Material prepared by the Board of Studies NSW for and on behalf of the State of New South 
Wales. The Material is protected by Crown copyright. 
 
All rights reserved. No part of the Material may be reproduced in Australia or in any other country by any process, 
electronic or otherwise, in any material form or transmitted to any other person or stored electronically in any form 
without the prior written permission of the Board of Studies NSW, except as permitted by the Copyright Act 1968. 
School students in NSW and teachers in schools in NSW may copy reasonable portions of the Material for the purposes 
of bona fide research or study.  
 
When you access the Material you agree: 
• to use the Material for information purposes only 
• to reproduce a single copy for personal bona fide study use only and not to reproduce any major extract or the 

entire Material without the prior permission of the Board of Studies NSW 
• to acknowledge that the Material is provided by the Board of Studies NSW  
• not to make any charge for providing the Material or any part of the Material to another person or in any way make 

commercial use of the Material without the prior written consent of the Board of Studies NSW and payment of the 
appropriate copyright fee 

• to include this copyright notice in any copy made 
• not to modify the Material or any part of the Material without the express prior written permission of the Board of 

Studies NSW. 
 
The Material may contain third-party copyright materials such as photos, diagrams, quotations, cartoons and artworks. 
These materials are protected by Australian and international copyright laws and may not be reproduced or transmitted 
in any format without the copyright owner’s specific permission. Unauthorised reproduction, transmission or 
commercial use of such copyright materials may result in prosecution. 
 
The Board of Studies has made all reasonable attempts to locate owners of third-party copyright material and invites 
anyone from whom permission has not been sought to contact the Copyright Officer, ph (02) 9367 8289,  
fax (02) 9279 1482. 
 
Published by Board of Studies NSW 
GPO Box 5300 
Sydney 2001 
Australia 
 
Tel: (02) 9367 8111  
Fax: (02) 9367 8484 
Internet: http://www.boardofstudies.nsw.edu.au 
 
 
2009083 
 
 



2008 HSC Notes from the Marking Centre – Software Design and Development 
 

Contents 
 
Section I............................................................................................................................................... 4 
Section II ............................................................................................................................................. 5 
Section III ............................................................................................................................................ 9 
 



4 

2008 HSC NOTES FROM THE MARKING CENTRE 
SOFTWARE DESIGN AND DEVELOPMENT 

 
 

Introduction 
 
This document has been produced for the teachers and candidates of the Stage 6 course in Software 
Design and Development. It contains comments on candidate responses to the 2008 Higher School 
Certificate examination, indicating the quality of the responses and highlighting their relative 
strengths and weaknesses. 
 
This document should be read along with the relevant syllabus, the 2008 Higher School Certificate 
examination, the marking guidelines and other support documents which have been developed by 
the Board of Studies to assist in the teaching and learning of Software Design and Development. 

 
Teachers and candidates should be aware that examiners may ask questions in Sections I and II that 
combine knowledge, skills and understandings from across the core of the HSC syllabus.  
 
 
Section I  
 

Question Correct 
response 

 Question Correct  
response 

1 A  11 D 
2 B  12 C 
3 D  13 A 
4 A  14 C 
5 B  15 D 
6 C  16 B 
7 D  17 B 
8 A  18 A 
9 C  19 C 

10 C  20 B 
 
 



2008 HSC Notes from the Marking Centre – Software Design and Development 
 

5 

Section II 
 
General comments 
 
The 2008 Higher School Certificate examination in Software Design and Development required 
candidates to analyse and interpret situations and to apply their knowledge to these situations. Many 
candidates showed a sound understanding of concepts but were less able to apply this knowledge 
appropriately, often giving general answers or answers not directly related to the particular situation 
described in the question. It should be noted by candidates that if a scenario is given in the question, 
then it should be referred to in their responses. Candidates should relate their knowledge of the 
concept being examined to the situation or system described in the question. 
 
Question 21 
 
(a) (i) Better responses correctly identified a feature of reverse engineering. Weaker responses 

tended to identify superficial features only or provided single word answers such as 
‘decompilation’. 

 
 (ii) Better responses explained the effect of reverse engineering in relation to copyright, 

financial and legal issues. Weaker responses focused on the process rather than its specific 
effect on intellectual property rights.  

 
(b) (i) Better responses included appropriate screen elements within the design and correctly 

labelled the diagram illustrating an understanding of screen design principles. Candidates 
are reminded that screen designs should be drawn clearly and large enough to identify 
both the fields and particular interface design elements included. 

 
  Weaker responses provided a simplistic layout, with minimal use of screen elements such 

as radio buttons, check boxes or combo-boxes, and often did not provide labelling or 
annotation of the diagram. 

 
 (ii) Better responses included the correct use of columns for data type, field size, description 

and example. 
 
  Weaker responses simply listed the identifiers and used incorrect or inappropriate data 

types such as ‘menu’ or ‘drop down’ instead of using terms such as ‘numeric’, ‘string’ or 
‘Boolean’.  

 
(c) (i) Mid-range responses identified the variable as a counter. Poorer responses showed little 

understanding of the algorithm or the use of the variable ‘fishfingers’. Candidates are 
reminded that they should be able to read and interpret algorithms expressed either as 
flowcharts or in pseudocode. 

 
 (ii) Weaker responses incorrectly identified ‘number’ or ‘fishfingers’ as the sentinel value, 

instead of the correct answer of −1. 
 
 (iii) Better responses outlined the need to test all possible paths through the algorithm. Weaker 

responses did not mention ‘boundary conditions’, ‘different data types’ or ‘invalid data’. 
Better responses not only included the above examples, but correctly linked these to the 



2008 HSC Notes from the Marking Centre – Software Design and Development 
 

6 

scenario. Candidates are reminded that questions such as these require specific answers 
relating directly to the given algorithm rather than broad general features. 

 
 (iv) Better responses demonstrated a clear understanding that the desk check would terminate 

when the sentinel value ‘−1’ was input, hence making the rest of the test data set 
redundant. They also showed the values of all variables as they changed, using an 
appropriate layout for a desk check. 

 
  Weaker responses attempted to use all of the test data, and some had little understanding 

of the general layout, purpose and process of a desk check. They simply placed all given 
data items in the number column reflecting a limited understanding of either the algorithm 
or the process of desk checking. Some responses showed obvious understanding of the 
algorithm, and provided the final correct outputs in the table but did not demonstrate the 
steps taken to reach that output as required by the question ‘completing a desk check’. 

 
 (v) Better responses mentioned the need to replace the post-test loop with a pre-test loop, 

modified the condition detecting the ‘small’ value and identified the irrelevance of the 
final ‘IF’ statement. 

 
  Weaker responses either copied sections of the algorithm into their writing booklets, or 

identified specific line numbers only and did not attempt to explain what the cause of the 
error was in the specified line.  

 
Question 22 
 
(a) (i) Better responses identified the fact that accountNumber was used as the linear search 

variable to find the name and address of the person in the relevant account record. 
   
  Weaker responses only used terms such as ‘match’ or ‘locate’ without any description of 

what was being matched or located. The weakest responses did not attempt to relate the 
use of the variable in the given algorithm and used generalisations such as ‘stores a value’. 

 
 (ii) Better responses identified the error and then went on to explain that the omission of an 

‘IF’ condition caused an infinite loop. Mid-range responses correctly identified that the 
error was in line 150. However, their description of the error was inaccurate. They either 
thought that ‘WHILE NOT’ is an invalid pseudocode keyword combination, or that ‘NOT 
found’ should have been written as ‘Found = false’. Candidates are reminded that 
‘WHILE NOT found’ is a perfectly acceptable use of a Boolean variable such as ‘found’. 

 
  Weaker responses incorrectly commented on the fact that the word ‘THEN’ in line 170 

was in the wrong line and should have been at the end of line 160. Other weaker responses 
showed concern that there was no new data read inside the loop – failing to recognise the 
purpose of line 210.  

 
 (iii) Better responses identified the data found in the algorithm and included appropriate print 

statements between either lines 190 and 200, or lines 230 and 240. Some weaker responses 
incorrectly enclosed their variable names inside quotation marks in the print statement. 

 



2008 HSC Notes from the Marking Centre – Software Design and Development 
 

7 

(b) (i) Better responses included the use of terminology such as ‘documentation’ or ‘guidelines’, 
correctly indicating the purpose of design specifications. They then included an 
explanation of what was included in these specifications, with some providing examples. 

   
  Weaker responses consisted of very short broad answers that did not provide 

demonstration of sufficient understanding. Other weaker responses confused the feasibility 
study with design specifications. 

 
 (ii) Better responses referred to the usage of the design specifications at the testing and 

evaluating stage. They demonstrated an understanding that this documentation provided 
guidelines that would be used during the quality assurance assessment process with the 
requirement that all guidelines must be met if the finished product is to meet the set 
benchmark. Some better responses included the fact that for a system to reach the 
established benchmark during the quality assurance process, the design specifications must 
be continually referred to and adhered to throughout all the subsequent stages of the 
program development cycle.  

 
  Weaker responses indicated some knowledge about quality assurance without relating it to 

the design specifications or merely attempted a description of design specifications 
without referring to quality assurance. 

 
(iii) Better responses included relevant reasons for the communication. 
 

  Weaker responses referred to communication with users at various stages in the 
development process rather than specifically in the development and modification of 
design specifications. 

 
 (iv) Better responses identified and described the benefits of using CASE tools at this stage. 

They included specific features of CASE tools and ways in which these features could be 
productively used rather than just using general terms such as ‘quicker’ or ‘easier’.  

 
  Weaker responses only indicated some facts about CASE tools but did not relate this 

knowledge to the question. Weaker responses also inappropriately referred to the use of 
CASE tools in the implementation stage rather than in the development of design 
specifications. 

 
(c) (i) Better responses included answers to both parts of this question. They identified a relevant 

issue such as problems that could occur if the system was only available in English. They 
then went on to discuss what must be included in the design and eventual software 
solution for the problem to be effectively addressed. 

 
  Weaker responses identified a social or ethical issue with no reference to the implications 

for the design of the software.  
 
 (ii) Many mid-range responses indicated knowledge of the responsibilities of a software 

developer, but did not attempt to relate these responsibilities to the described proposed 
Tax Office system. 

 



2008 HSC Notes from the Marking Centre – Software Design and Development 
 

8 

  Better responses included a discussion of a variety of responsibilities rather than just 
stating one or two. They also went beyond the solving of social and ethical issues and 
included responsibilities such as adhering to a code of conduct or provision of 
documentation for maintainability if the tax requirements are changed. 

 
Question 23 
 
(a) (i) Better responses included the actual formulae for the calculations in the processes. 

Candidates are reminded that the correct format for an IPO chart can be found in the 
‘Software and Course Specifications’ document. 

 
 (ii)  Better responses indicated correctly that the stub was the Calc_Circ function, as it merely 

displays the text ‘Circle’ without yet including the logic to perform the detailed 
calculations required. 

 
 (iii) Better responses took the required statements from the Calc_Rectangle function provided 

in the question to generate the appropriate pseudocode. Weaker responses did not use the 
symbol * to indicate multiplication and simply rewrote the formulae provided in the 
question. Other weaker responses included extra unnecessary variables in the input 
statement in addition to radius, or did not construct the return message correctly. 

 
(b) (i)  In the better responses, candidates provided both the line number(s) for the nominated 

control structure and named it correctly. However, in many mid-range responses 
candidates could only locate a control structure but not name it correctly, or gave only a 
partial name such as ‘loop’ instead of ‘pre-test repetition’. There was confusion in some 
responses between control structures and data structures. 

 
  Candidates are advised that line numbers are used in algorithms to allow them to easily 

refer to specific statements, and the line numbers should be used specifically for this 
purpose. 

 
 (ii)  Better responses correctly identified this as a linear search. Weaker responses confused 

searches with sorts or did not understand the difference between linear and binary 
searches. Some responses identified the search technique as ‘sequential’, however this is 
not a term used in the syllabus. 

 
 (iii) Better responses introduced a flag by initialising a Boolean variable to false between 110 

and 120, and then changing the flag to true inside the ‘IF’ statement (140 to 160). After the 
repetition (ie after line 190) the flag is tested, with an appropriate output statement if the 
flag is true. 

 
  Weaker responses modified the IF-ENDIF selection structure by incorrectly adding an 

ELSE section and displaying a message at that point. Unfortunately, this will print a 
message for every dailyRainfall value that does not match the inputted targetRainfall 
value. 

 
  Some responses included a rewrite of the entire algorithm from the question. This was not 

necessary. Examples of acceptable methods of adding lines of code include statements 
such as: ‘Add line 115: Found = False’ or ‘Add after line 110: Found = False’. 



2008 HSC Notes from the Marking Centre – Software Design and Development 
 

9 

 
 (iv) Better responses demonstrated an understanding of what a standard module is and why 

software developers include them in their developed code. The better responses clearly 
related the features of standard modules to the corresponding benefits for developers. 

 
  Weaker responses did not distinguish between the advantages of a modular approach to 

programming and the advantages of using standard modules. 
 
(c) (i) In better responses, candidates recognised the statement given in the question as a ‘User 

Input Statement’, and were then able to refer to the required syntax definitions of a 
‘Variable List’, ‘Variable’ and ‘Letter’ to show that the statement was legal. Weaker 
responses simply mentioned the need to refer to the definition of a ‘Variable List’ without 
reference to other definitions, or did not refer to the syntax and statement definitions at all. 

 
 (ii) Better responses realised that the use of the terms IF and ENDIF were incorrect, based on 

the definition of the Conditional Statement provided. Better responses described the other 
two syntax errors involving the invalid use of ‘:=’ and ‘Tom’ by referring to the EBNF 
definitions for Condition and Constant. 

 
 (iii) While mid-range responses showed an understanding of the use of railroad diagrams, only 

better responses were able to demonstrate sufficient understanding by constructing an 
appropriate diagram for a post-test repetition structure using the syntax defined in the 
question. Better responses also used terminal symbols for the reserved words REPEAT 
and UNTIL and included a ‘Conditional Exp’ after the UNTIL. They also included a 
choice and repetition of statements between REPEAT and UNTIL. 

 
Section III 
 
Question 24 – Evolution of programming languages 
 
(a) (i) Better responses showed an understanding that paradigms are a way of thinking about or 

approaching problem solving. 
 
 (ii) Better responses identified a language that supports object oriented programming (OOP). 

Some responses stated, incorrectly, that languages that offer visual drag and drop facilities 
such as Visual Basic are object-oriented languages. 

 
 (iii) Better responses identified similarities between the paradigms. Mid-range responses 

demonstrated some knowledge of the two paradigms and in the process were able to 
demonstrate differences. Weaker responses presented answers in broad terms using 
technical language referring to the building blocks of each paradigm, but with little 
specific detail. Often responses omitted to give examples of the type of solutions for 
which the paradigm would be suitable. 

 
(b) (i) Better responses showed understanding that the inference engine provides the logic to 

work through the facts and rules to arrive at a solution or goal. 
 
 (ii) Better responses succinctly listed all of the information. They correctly interpreted the 

facts and rules, and made the required connections to obtain a simple final conclusion. 



2008 HSC Notes from the Marking Centre – Software Design and Development 
 

10 

Weaker responses could only identify the facts and could not apply the rules, with these 
responses simply rewriting the rules given in the question, and filling in or attempting to 
fill in the variables in the rules with names. 

 
(c) (i) Weaker responses had difficulty distinguishing between LFIND and RFIND, and did not 

show the working required to get to their final answer. 
 
 (ii) The same comments for part (c) (i) also apply to this part, with the provision of the 

required working even more critical in deriving the correct answer. 
 
(d) (i) In better responses, candidates demonstrated an understanding of the concept of instances 

by providing a number of relevant examples of instances. They provided sample data to 
show that the attributes would change for each instance, such as a client user who is 
different to an administrator user. Weaker responses confused an instance with the 
methods listed in the sample pseudocode. 

 
 (ii) Mid-range responses described the correct sequence of processes in the sample 

pseudocode, but without relating these correctly to an object-oriented environment. In 
better responses, candidates described internal and external message passing between the 
objects. In weaker responses, many candidates confused external message passing with 
screen prompts to the user. 

 
 (iii) In mid-range responses candidates demonstrated appropriate knowledge of the concept of 

inheritance. In better responses, candidates applied their understanding of inheritance to 
the scenario provided, supplementing their answer with a relevant diagram to show that 
the properties of a teacher are inherited from those of a human being, but that a teacher 
also can have specific properties not owned by a human being (such as possessing a 
teaching degree for example). 

 
Question 25 – The software developer’s view of the hardware 
 
(a) (i) Better responses correctly divided the two binary numbers, showing the appropriate 

working. Mid-range responses derived the correct answer by converting to a decimal, 
evaluating and converting the answer back to binary. Candidates are reminded to read the 
question carefully as some added rather than divided the two numbers given. 

 
 (ii) In the better responses, candidates provided good descriptions of both floating point and 

fixed point methods. Mid-range responses outlined only one method of representing 
fractions in binary and often without sufficient description to fully describe the process. 
Candidates are reminded that the use of an example often assists in demonstrating 
understanding and the better responses included examples of both methods. A small 
number of weaker responses referred incorrectly to the use of one and two’s complement 
representation. 

 
 (iii) In better responses that demonstrated a good grasp of memory addressing, candidates were 

able to recognise the need to store each 8 bit ASCII character in a separate memory 
location and correctly incremented the address of each location through 2F to 30 and 31. 
In weaker responses, candidates reduced each ASCII letter to two characters either 



2008 HSC Notes from the Marking Centre – Software Design and Development 
 

11 

arbitrarily in binary or by converting to hexadecimal and leaving the resultant 8 character 
string in memory location 2E.  

 
(b)  (i) Better responses provided a clear understanding of the purpose of a truth table as 

displaying the inputs and resultant outputs for each logic gate in a circuit diagram. 
 
 (ii) Better responses demonstrated a good understanding of the operation of the given circuit 

by drawing a table with correctly labelled columns and including all possible input values 
for A and B. Weaker responses appeared to give random incorrect outputs for a given gate 
or provided a set of outputs for gates not included in the circuit such as XOR or AND 
gates. 

  
(c) (i) In better responses, candidates recognised that R and S were data streams passing through 

an AND gate to produce a single output data stream. Candidates are reminded to show the 
processes and working involved; in this case a bit-by-bit comparison was required. 

 
 (ii) Mid-range responses successfully deduced at least one correct value of S to produce the 

stated output. A significant number of better responses stated all four possible values 
required to answer the question in full. 

 
(d) (i) Better responses, showing a good understanding of the reason for including a header in the 

data packet, listed the possible contents, with mid-range responses listing at least two 
components correctly. Some weaker responses confused word processing headers with 
headers in a data packet. 

 
 (ii) Better responses showed an understanding of the format and contents of the data packets 

transmitted from each device, and were able to compare the component parts of the data 
stream effectively, including header, data and trailer. Comparisons used in these responses 
gave an indication of similarities such as the identification of the device in the header 
together with some indication of the start of the data stream. Good responses also included 
differences such as the nature of the data transmitted and the relative size of the packets 
transmitted and the need for different error checking methods in the trailer. Weaker 
responses tended to provide descriptions of how the devices were used rather than 
describing the contents of the data packets being sent. Some weaker responses confused 
the term USB with a USB memory stick and so provided an incorrect response. 

 
 
 



 – 1 –  

Software Design and Development 
2008 HSC Examination Mapping Grid 

Question Marks Content Syllabus outcomes 

Section I 

1 1 9.1.1 H3.1 

2 1 9.3 H5.1, H5.2 

3 1 9.2.1 H5.2 

4 1 9.2.1 H5.2 

5 1 9.2.1 H5.2 

6 1 9.1.2 H5.1 

7 1 9.3 H5.2, H6.2  

8 1 9.2.3 H1.3 

9 1 9.2.3 H4.2 

10 1 9.2.2 H5.2 

11 1 9.2.3 H4.2 

12 1 9.2.3 H1.3 

13 1 9.2.4 H5.2, H5.3 

14 1 9.2.2 H1.3 

15 1 9.2.3 H1.1, H1.3 

16 1 9.1.2 H4.2 

17 1 9.1.1 H3.1 

18 1 9.1.1 H2.2 

19 1 9.2.3 H4.2, H4.3 

20 1 9.2.2 H4.2 

Section II 

21(a)(i) 1 9.1.1, 9.2.1 H3.1, H3.2 

21(a)(ii) 2 9.1.1, 9.2.1 H3.1, H3.2 

21(b)(i) 4 9.2.1 H4.1, H4.2 

21(b)(ii) 3 9.1.2 H4.2, H5.2 

21(c)(i) 1 9.2.1, 9.2.2, 9.2.3 H4.2, H4.3 

21(c)(ii) 1 9.2.1, 9.2.2, 9.2.3, 9.3 H4.2, H4.3 

21(c)(iii) 2 9.2.4 H4.1, H4.2 

21(c)(iv) 3 9.2.1, 9.2.2, 9.2.3, 9.2.4, 9.3 H4.1, H4.2 

21(c)(v) 3 9.2.1, 9.2.2, 9.2.3, 9.3 H4.1, H4.2 

22(a)(i) 2 9.2.2 H4.2, H4.3 

22(a)(ii) 2 9.2.2 H4.2, H4.3 

22(a)(iii) 2 9.2.2 H4.2, H4.3 

22(b)(i) 2 9.2.1 H4.2, H4.3 

22(b)(ii) 2 9.2.1 H4.2, H5.2 

22(b)(iii) 2 9.2.1 H4.1, H4.2, H6.1 



  2008 HSC     Software Design and Development     Mapping Grid 

 – 2 –  

Question Marks Content Syllabus outcomes 

22(b)(iv) 2 9.2.1, 9.2.2 H4.1, H4.2 

22(c)(i) 3 9.1.1 H3.1 

22(c)(ii) 3 9.1.2 H1.2, H4.1, H5.1 

23(a)(i) 3 9.2.1 H5.2 

23(a)(ii) 1 9.2.3 H4.2, H4.3 

23(a)(iii) 3 9.2.2 H5.2 

23(b)(i) 1 9.2.2 H4.2, H4.3 

23(b)(ii) 1 9.2.2 H4.2, H4.3 

23(b)(iii) 2 9.2.2 H4.2, H4.3 

23(b)(iv) 3 9.2.2 H4.2, H4.3 

23(c)(i) 1 9.2.3 H4.2, H4.3 

23(c)(ii) 2 9.2.3 H4.2, H4.3 

23(c)(iii) 3 9.2.3 H4.2, H4.3 

Section III 

24(a)(i) 1 9.4.1 H1.2,  H2.1 

24(a)(ii) 1 9.4.1 H1.2, H2.1 

24(a)(iii) 3 9.4.1 H4.2 

24(b)(i) 1 9.4.1 H2.1, H2.2 

24(b)(ii) 3 9.4.1 H4.2 

24(c)(i) 2 9.4.1 H4.2 

24(c)(ii) 2 9.4.1 H4.2 

24(d)(i) 2 9.4.1 H1.2 

24(d)(ii) 3 9.4.1 H1.2, H4.1 

24(d)(iii) 2 9.4.1 H1.2, H4.2 

25(a)(i) 2 9.4.2 H1.1, H1.3 

25(a)(ii) 3 9.4.2 H1.1, H1.3 

25(a)(iii) 2 9.4.2 H1.1 

25(b)(i) 1 9.4.2 H4.1 

25(b)(ii) 3 9.4.2 H1.1, H4.1 

25(c)(i) 2 9.4.2 H1.1, H1.3 

25(c)(ii) 2 9.4.2 H1.1, H1.3 

25(d)(i) 2 9.4.2 H1.1, H1.3, H4.1 

25(d)(ii) 3 9.4.2 H1.1, H1.3, H4.1 
 



   

 

2008 HSC Software Design and Development 
Marking Guidelines 

The following marking guidelines were developed by the examination committee for the 
2008 HSC examination in Software Design and Development, and were used at the marking 
centre in marking student responses. For each question the marking guidelines are contained in 
a table showing the criteria associated with each mark or mark range. For some questions, 
‘Sample Answers’ or ‘Answers may include’ sections are included. These are developed by the 
examination committee for two purposes. The committee does this: 

(1) as part of the development of the examination paper to ensure the questions will 
effectively assess students’ knowledge and skills, and 

(2) in order to provide some advice to the Supervisor of Marking about the nature and scope 
of the responses expected of students. 

 
The examination committee develops the marking guidelines concurrently with the examination 
paper. The ‘Sample Answers’ or similar advice are not intended to be exemplary or even 
complete answers or responses. As they are part of the examination committee’s ‘working 
document’, they may contain typographical errors, omissions, or only some of the possible 
correct answers. 
 
The information in the marking guidelines is further supplemented as required by the 
Supervisor of Marking and the senior markers at the marking centre. 
 
A range of different organisations produce booklets of sample answers for HSC examinations, 
and other notes for students and teachers. The Board of Studies does not attest to the 
correctness or suitability of the answers, sample responses or explanations provided. 
Nevertheless, many students and teachers have found such publications to be useful in their 
preparation for the HSC examinations. 
 
A copy of the Mapping Grid, which maps each question in the examination to course outcomes 
and content as detailed in the syllabus, is also included. 
 
 



  2008 HSC     Software Design and Development     Marking Guidelines 

 – 1 –  

Section II 

Question 21 (a) (i) 

Outcomes assessed: H3.1, H3.2 

MARKING GUIDELINES 
Criteria Marks 

• Identifies a feature of reverse/backwards engineering 1 

Sample answer/Answers could include: 

A feature of reverse/backward engineering is the legality of the process. If the code has 
copyright then the reverse/backward engineering is illegal. 
 
 
 
Question 21 (a) (ii) 

Outcomes assessed: H3.1, H3.2 

MARKING GUIDELINES 
Criteria Marks 

• Explains how reverse/backwards engineering affects the intellectual 
property rights of software developers 2 

• Identifies features of intellectual property rights of software developers 1 

Sample answer/Answers could include: 

Intellectual property rights apply to the ideas of the software developer. 

If people use reverse/backwards engineering to steal ideas from software developers the 
developers will be less likely to develop future projects and share their ideas. 

Unless the developer releases their intellectual rights it is illegal to use reverse/backwards 
engineering. 
Question 21 (b) (i) 

Outcomes assessed: H4.1, H4.2 

MARKING GUIDELINES 
Criteria Marks 

• Provides an appropriate design which involves most labels of key design 
consideration 4 

• Provides a design including some labels of key design considerations 3 
• Provides a design 2 
• Attempts a design 1 



  2008 HSC     Software Design and Development     Marking Guidelines 

 – 2 –  

Sample answer/Answers could include: 

 

 
 
 



  2008 HSC     Software Design and Development     Marking Guidelines 

 – 3 –  

Question 21 (b) (ii) 

Outcomes assessed: H4.2, H5.2 

MARKING GUIDELINES 
Criteria Marks 

• Provides a substantially correct data dictionary 3 
• Provides a data dictionary relating to the question 2 
• Identifies features of a data dictionary 1 

Sample answer/Answers could include: 

Field Name Field size Data Type Description 
ID-number 9 String Primary key 
Surname 30 String Family name eg Smith 
Given Names 30 String Name eg Sue, Tom 
Gender 1 Boolean Either M or F 
Date of Birth 10 Date eg 26/10/2000 
Address line 1 30 String eg Villa 5 
Address line 2 30 String eg 11 Smith St 
City  30 String eg Chatswood 
State 30 String eg Queensland 
Post Code 4 Numeric eg 2141 

 
 
 
Question 21 (c) (i) 

Outcomes assessed: H4.2, H4.3 

MARKING GUIDELINES 
Criteria Marks 

• Identifies the purpose of the variable ‘fishfingers’ 1 

Sample answer/Answers could include:  

The purpose of ‘fishfingers’ is to count the READ (entered) numbers. 
 



  2008 HSC     Software Design and Development     Marking Guidelines 

 – 4 –  

Question 21 (c) (ii) 

Outcomes assessed: H4.2, H4.3 

MARKING GUIDELINES 
Criteria Marks 

• Identifies the sentinel value in the algorithm as –1 1 

Sample answer/Answers could include:  

Answer is –1. 
 
 
 
Question 21 (c) (iii) 

Outcomes assessed: H4.1, H4.2 

MARKING GUIDELINES 
Criteria Marks 

• Describes aspects to be considered when designing test data for the 
algorithm 2 

• Identifies a feature of test data 1 

Sample answer/Answers could include:  

Positive and negative integers, rational numbers, 0 and the sentinel value –1.  Include equal 
values and characters other than numbers should also be entered. 
 
 
 
Question 21 (c) (iv) 

Outcomes assessed: H4.1, H4.2 

MARKING GUIDELINES 
Criteria Marks 

• Provides substantially correct desk check 3 
• Provides desk check relating to the question 2 
• Identifies features of a desk check 1 

Sample answer/Answers could include:  

fishfingers Number Large Small OUTPUT 
0 7 7 7 Enter a Mark or –1 
1 5  5 Enter a Mark or –1 
2 5   Enter a Mark or –1 
3 –1  –1 7, –1, 3 

 
 
 



  2008 HSC     Software Design and Development     Marking Guidelines 

 – 5 –  

Question 21 (c) (v) 

Outcomes assessed: H4.1, H4.2 

MARKING GUIDELINES 
Criteria Marks 

• Identifies errors and provides a correct solution to the errors 3 
• Identifies error and provides an attempt at a solution 2 
• Identifies errors 

OR 
• Provides an attempt at a solution 

1 

Sample answer/Answers could include:  

* Pre-test loop needed 
160 While number < > –1 
* Marks need to be entered 
270 IF fishfingers > 0 THEN 
*Small always –1 
– change to pre-test loop 
– move 170 to after 250 

 
 
 
Question 22 (a) (i) 

Outcomes assessed: H4.2, H4.3 

MARKING GUIDELINES 
Criteria Marks 

• Provides explanation as to how accountNumber has been used 2 
• Identifies features of the variable accountNumber 1 

Sample answer/Answers could include:  

The variable accountNumber has been used as a search variable to find the person’s name and 
address who owns the account. 
 
The variable is used to match with the person’s account in the search process. 
 



  2008 HSC     Software Design and Development     Marking Guidelines 

 – 6 –  

Question 22 (a) (ii) 

Outcomes assessed: H4.2, H4.3 

MARKING GUIDELINES 
Criteria Marks 

• Provides description of error that indicates understanding of the problem 2 
• Identifies error 1 

Sample answer/Answers could include:  

The error is: If not found, the algorithm loops indefinitely. 
 
 
 
Question 22 (a) (iii) 

Outcomes assessed: H4.2, H4.3 

MARKING GUIDELINES 
Criteria Marks 

• Provides substantially correct alteration to algorithm that prints data on the 
screen  2 

• Attempts alteration to algorithm indicating limited understanding 1 

Sample answer/Answers could include:  

Between lines 190 and 200, add 
 
PRINT ‘Account number is’ account Number, 
 ‘Account Name is’ account Name, 
 ‘Account Address is’ account Address. 

 
 
 
Question 22 (b) (i) 

Outcomes assessed: H4.2, H4.3 

MARKING GUIDELINES 
Criteria Marks 

• Provides definition indicating understanding of design specifications 2 
• Identifies features of design specifications 1 

Sample answer/Answers could include:  

Design specifications refer to a set of documentation and guidelines and principles used to 
develop the software.  As such it specifies the requirements (from different users’ point of 
view) as well as the functional components of the design to meet the requirements.  It outlines 
the software components and how they interact with each other to produce the output (which 
satisfy the requirements) (ie requirements, software components, functions of software 
components, subsystem to overall system solution). 
 
In some sense, software design specs provide some form of blue print for actual solution. 



  2008 HSC     Software Design and Development     Marking Guidelines 

 – 7 –  

Question 22 (b) (ii) 

Outcomes assessed: H4.2, H5.2 

MARKING GUIDELINES 
Criteria Marks 

• Provides description indicating understanding of how software design 
specification are used for quality assurance 2 

• Provides identification of features of software design specification in the 
context of quality assurance 1 

Sample answer/Answers could include:  

Quality assurance in the context of software design specifications provides a set of methods and 
techniques which help to evaluate whether the developed software solution meets the 
requirements (originally set out to achieve). 
 
That is, software design specs form the basis of criteria to evaluate whether the software 
solution is working correctly. 
 
It also helps the evaluator to understand better that functionality of the software which in turn 
helps to determine the quality of software and give an assurance rating. 
 
 
 
Question 22 (b) (iii) 

Outcomes assessed: H4.1, H4.2, H6.1 

MARKING GUIDELINES 
Criteria Marks 

• Provides reasons indicating understanding of communication between 
software developers and users when developing design specification 2 

• Provides identification of features of communication between software 
developers and users 1 

Sample answer/Answers could include:  

In developing a software system, the users and their requirements form the critical inputs to the 
software design.  Hence it is necessary to communicate with the users to understand their 
requirements such as functionality and features required, the types and formats of outputs to be 
produced, how the various inputs are to be entered (eg keyboard, voice, mouse), the 
characteristics of the user environment such as the type of hardware, social and ethical issues 
such as special needs. 
 
It is worth noting that there are different types of users (eg individuals, organizations, different 
roles of users) as well as future users (who may become users in the future). 
 



  2008 HSC     Software Design and Development     Marking Guidelines 

 – 8 –  

Question 22 (b) (iv) 

Outcomes assessed: H4.1, H4.2 

MARKING GUIDELINES 
Criteria Marks 

• Provides description indicating understanding of the benefits of CASE 
tools to provide specifications 2 

• Provides identification of features of CASE tools 1 

Sample answer/Answers could include:  

Benefits of using CASE tools to produce specifications are: 
 
– Representation, modification and evolution of design 
– Helps to reduce development time (design diagrams) 
– Helps to reason about system (understand better) 
– Helps to present the design better to different types of users. 
 
 
 
Question 22 (c) (i) 

Outcomes assessed: H3.1 

MARKING GUIDELINES 
Criteria Marks 

• Provides, indicating good understanding of the topic, an identification of 
social or ethical issue 

AND 
• Discussion of implications on final design 

3 

• Provides, indicating understanding of the topic, an identification of social or 
ethical issue 

AND 
• Discussion of implications on final design 

2 

• Provides, indicating a limited understanding of the topic, an identification of 
social or ethical issue 

OR 
• Identification of features of impact on final design 

1 

 



  2008 HSC     Software Design and Development     Marking Guidelines 

 – 9 –  

Question 22 (c) (i) (continued) 

Sample answer/Answers could include:  

Ethical/social issues could include (and discuss the chosen issue) 
– Users with limited computing (eg same section of population eg senior citizens) 
– Users with disability (eg partially blind) 
– eg Need for  

⇒ Voice input/output system 
– Uses with language (eg English) difficulty 
– Privacy issues 

⇒it contains confidential information (eg Tax) 
⇒who gets to read the information? 

– User friendly interface and clear instructions as to how to use the system. 
 
 
Question 22 (c) (ii) 

Outcomes assessed: H1.2, H4.1, H5.1 

MARKING GUIDELINES 
Criteria Marks 

• Provides discussion of the software developer’s responsibilities in 
developing the tax return software indicating a good understanding of the 
issue 

3 

• Provides description of features of the software developer’s responsibilities 
in developing the tax return software indicating an understanding of the 
issue 

2 

• Provides identification of a feature of the software developer’s 
responsibility 1 

Sample answer/Answers could include:  

Some of the key responsibilities of the software developer in designing this software tax system 
include: 
 

– Correctness and reliability of software produced 
⇒ Program needs to produce right answers 
⇒ Program needs to produce consistent answers and some answers for same 

data 
⇒ Software integrity 

– Security of software 
⇒ Program needs to ensure that confidential and private data be protected 
⇒ Free from viruses, malicious Trojan horses 

– Software maintenance 
⇒ Support must be provided to maintain and update the software 
⇒ Timely updates and their installation 



  2008 HSC     Software Design and Development     Marking Guidelines 

 – 10 –  

Question 22 (c) (ii) (continued) 
 

– Responsiveness 
⇒ Facilities such as help desk, online help for users 
⇒ support for tax office to install and operate this software 

– Code of conduct for software developers 
 Use of systematic methodology for software 
 Provision of software documentation 
 If using other software, providing suitable acknowledgement, obtaining 

of permission etc. 
 
 
 
Question 23 (a) (i) 

Outcomes assessed: H5.2 

MARKING GUIDELINES 
Criteria Marks 

• Constructs an IPO diagram or IPO chart 
AND  
• Correctly puts together INPUTS AND OUTPUTS AND PROCESSES 

3 

• Constructs an IPO diagram or IPO chart 
AND  
• Correctly puts together INPUTS OR OUTPUTS OR PROCESSES 

2 

• Attempts to construct an IPO diagram OR IPO chart 
OR 
• Correctly puts together INPUTS OR OUTPUTS OR PROCESSES 

1 

Sample answer/Answers could include:  

INPUT PROCESS OUTPUT 
Rectangle 
Length 
Width 

Calc Rectangle 
Perimeter = 2 x length 2x 
width 
Area = length * width 

 
Perimeter = (perimeter) 
Area = (area) 

Circle Calc – Circ Circle 
 



  2008 HSC     Software Design and Development     Marking Guidelines 

 – 11 –  

 
Question 23 (a) (ii) 

Outcomes assessed: H4.2, H4.3 

MARKING GUIDELINES 
Criteria Marks 

• Identifies module ‘Calc_Circ’ as a stub 1 

Sample answer/Answers could include:  

Calc_Circ 
 
 
 
Question 23 (a) (iii) 

Outcomes assessed: H5.2 

MARKING GUIDELINES 
Criteria Marks 

• Provides substantially correct  pseudocode for the module 3 
• Provides pseudocode for the module 2 
• Attempts pseudocode for the module 1 

Sample answer/Answers could include:  

Function subprogram Calc_Circ (message) INPUT radius 
Circumference = 2* !  * radius 
Area = !  * radius * radius 
Message = ‘circumference =’; circumference 
‘area =’; area 
RETURN message 
END 
 
 
Question 23 (b) (i) 

Outcomes assessed: H4.2, H4.3 

MARKING GUIDELINES 
Criteria Marks 

• Locate and name a control structure 1 

Sample answer/Answers could include:  

Pre-test loop/Pre-test repetition 



  2008 HSC     Software Design and Development     Marking Guidelines 

 – 12 –  

 
Question 23 (b) (ii) 

Outcomes assessed: H4.2, H4.3 

MARKING GUIDELINES 
Criteria Marks 

• Names the search as linear search 1 

Sample answer/Answers could include:  

Linear search 
 
 
 
Question 23 (b) (iii) 

Outcomes assessed: H4.2, H4.3 

MARKING GUIDELINES 
Criteria Marks 

• Provides modified algorithm that is substantially correct 2 
• Provides modified algorithm indicating understanding 1 

Sample answer/Answers could include:  

Between 120 and 130 Found = False 
Between 160 and 170 Found = Time 
Between 190 and 200 If Found = False Then 
 
PRINT ‘Target Rainfall not found’ 
 
End If 
 
 
Question 23 (b) (iv) 

Outcomes assessed: H4.2, H4.3 

MARKING GUIDELINES 
Criteria Marks 

• Explains why software developers use standard modules 
AND 
• Gives an example 

3 

• Indicates an understanding of the use of standard modules by software 
developers 2 

• Provides a limited understanding of standard modules OR identifies a 
standard module 1 

 



  2008 HSC     Software Design and Development     Marking Guidelines 

 – 13 –  

Question 23 (b) (iv) (continued) 

Sample answer/Answers could include:  

Standard software modules are used in the development of software solutions as they help to: 
 

⇒ reduce software development time (on the assumption they are correct) 
⇒ on the assumption that standard software modules are correctly written – they compare 

quality of overall solution (less or no errors) 
 

– It is assumed that standard software modules have been tested in a variety of 
applications.  Hence there is a greater chance of them working properly for the 
system being developed 

– Standard software modules are easier to understand (as they would have been 
used before) 

 
Examples of standard algorithms other than searching/sorting  

– Standard user interface design algorithms (eg main system) 
– Data conversion algorithms 
– Security algorithms (eg encryption, integrity checking). 

 
 
Question 23 (c) (i) 

Outcomes assessed: H4.2, H4.3 

MARKING GUIDELINES 
Criteria Marks 

• Identifies a reason providing an understanding of syntax and structure 1 

Sample answer/Answers could include:  

The structure GET has a < variable list > 
<Variable list> is a set of variables reported by a comma 
 

– Variable is <letter> followed by <letter> 
– Letter is A…Z and a….z 

 
Name, number, age ⇒ is a list of variables separated by a comma 
 
Name  } 
Number } are variables; ie letter followed by letter 
Age  } 
 
⇒ Yes, statement is legal. 
 
 
 



  2008 HSC     Software Design and Development     Marking Guidelines 

 – 14 –  

Question 23 (c) (ii) 

Outcomes assessed: H4.2, H4.3 

MARKING GUIDELINES 
Criteria Marks 

• Provides substantially correct discussion of statement legality 2 
• Identifies an issue of legality indicating understanding of syntax and 

structure 1 

Sample answer/Answers could include:  

IF number:=7 THEN name:= Tom ENDIF 
 
Syntax not legal because 
• IF – ENDIF shoud be IFF – ENDIFF 
• number: = 7 is incorrect should be number = 7 
• Name: = TOM is incorrect because variable has been assigned to TOM which has not been 

declared to be constant 
 
 
Question 23 (c) (iii)  

Outcomes assessed: H4.2, H4.3 

MARKING GUIDELINES 
Criteria Marks 

• Defines a post-test repetition using a railroad diagram 3 
• Indicates an understanding of a post-test repetition using a railroad diagram 2 
• Attempts a railroad diagram 1 

 
 
 



  2008 HSC     Software Design and Development     Marking Guidelines 

 – 15 –  

Question 24 (a) (i)  

Outcomes assessed: H1.2, H2.1 

MARKING GUIDELINES 
Criteria Marks 

• Defines programming paradigm 1 

Sample answer/Answers could include:  

A model, used in this context to refer to a type of programming language. 
 
 
Question 24 (a) (ii)  

Outcomes assessed: H1.2, H2.1 

MARKING GUIDELINES 
Criteria Marks 

• Names ONE object-oriented language 1 

Sample answer/Answers could include:  

C++ 

 
 
Question 24 (a) (iii)  

Outcomes assessed: H4.2 

MARKING GUIDELINES 
Criteria Marks 

• Provides a discussion that demonstrates a substantial understanding of the 
similarities and differences between the imperative and functional 
paradigms 

3 

• Indicates an understanding of the similarities and/or differences between the 
imperative and functional paradigms 2 

• Demonstrates some knowledge of the characteristics of different 
programming paradigms 1 

 



  2008 HSC     Software Design and Development     Marking Guidelines 

 – 16 –  

Question 24 (a) (iii) (continued) 

Sample answer/Answers could include:  

– Both can utilise a modular approach based on common building blocks eg 
functions/procedures 

– Both can be used to solve a number of different types of problems, though functional 
languages lend themselves to mathematical problems 

– Imperative programming tends to result in more complex solutions with a greater amount of 
coding 

– Functional programming has more simplified coding and allows for greater re-use of code 
– Functional programming lends itself to the processing of lists of simple data, data streams etc 

whilst imperative programming works easily with a broad range of data types AND data 
structures 

– Functional programming lends itself to recursive repetition and classical problems with 
recursive solutions eg Towers of Hanoi. 

 
 
Question 24 (b) (i)  

Outcomes assessed: H2.1, H2.2 

MARKING GUIDELINES 
Criteria Marks 

• Demonstrates knowledge of inference engines 1 

Sample answer/Answers could include:  

The inference engine is the built-in processing part of a logic programming language that use the 
knowledge base to derive conclusions to the queries of the user.  

 
 
Question 24 (b) (ii)  

Outcomes assessed: H4.2 

MARKING GUIDELINES 
Criteria Marks 

• Demonstrates a substantial understanding of the application of facts and 
rules to extrapolate information 3 

• Demonstrates an understanding of the use of facts and rules 2 
• Demonstrates some knowledge of the use of facts or rules 1 

Sample answer/Answers could include:  

Natasha is a student 
Robert is a student 
Peter is a teacher 
Natasha, Robert and Peter attend SDD classes 
Robert and Natasha are SDD students 
Peter teaches SDD 
Peter teaches Robert and Natasha 



  2008 HSC     Software Design and Development     Marking Guidelines 

 – 17 –  

Question 24 (c) (i)  

Outcomes assessed: H4.2 

MARKING GUIDELINES 
Criteria Marks 

• Provides an evaluation demonstrating an understanding of the application 
of functions 2 

• Provides an answer demonstrating a limited understanding of functions 1 

Sample answer/Answers could include:  

CBN ([3,9,2, AARON], [AS]) 
= [3,9,2, AARON, AS] 
RFIND (4, [3,9,2, AARON, AS]) 
= 9 
 
 
Question 24 (c) (ii)  

Outcomes assessed: H4.2 

MARKING GUIDELINES 
Criteria Marks 

• Provides an evaluation demonstrating an understanding of the application 
of functions 2 

• Provides an answer demonstrating a limited understanding of functions 1 

Sample answer/Answers could include:  

LFIND (3, [45, 6,2, TOM] ) 
= 2 
RFIND (2, [PINK, BLUE, RED, GREEN]) 
= RED 
 
 
 
Question 24 (d) (i)  

Outcomes assessed: H1.2 

MARKING GUIDELINES 
Criteria Marks 

• Outlines examples of different instances of the class user 2 
• Identifies some features of the class 1 

Sample answer/Answers could include:  

Mary is an Admin user with an instance of the class user eg login_alias= ‘Mary1’, password = 
‘Mary 123’ and user_level =’Admin’. 
 
John is a client user with another/different instance of the class user eg login_alias = ‘Johno’, 
‘password 1234’ with user_level’  = ‘Client’. 
 



  2008 HSC     Software Design and Development     Marking Guidelines 

 – 18 –  

 
Question 24 (d) (ii)  

Outcomes assessed: H1.2, H4.1 

MARKING GUIDELINES 
Criteria Marks 

• Provides sequence of processes including information relating to messages 
between internal and external instances 3 

• Provides sequence of processes indicating understanding of class ‘user’ at 
the time of the process_login 2 

• Provides sequence of processes indicating an understanding of classes 1 

Sample answer/Answers could include:  

– A ‘long_alias’ is passed to the ‘process_login’ method 
– The ‘get_password’ method is called passed the ‘login_alias’.  It would ask the user for 

their password and return the password to ‘process_login’ 
– ‘Retreive_DBpassword’ method is called also passed the ‘long_alias’ and returns the 

stored password for the user 
– The entered password is compared to the stored password 
– If they are the same then the ‘valid’ attribute is set to true, otherwise set to false 
– This ‘valid’ attribute could then be used when accepting or denying the login attempt. 
 
 
 
Question 24 (d) (iii)  

Outcomes assessed: H1.2, H4.2 

MARKING GUIDELINES 
Criteria Marks 

• Provides explanation of specialisation and generalisation 2 
• Provides description of specialisation OR generalisation 1 

Sample answer/Answers could include:  

A teacher is the subclass of a human being, whilst a human being is the superclass. 
A subclass is a specialised version of a superclass and a superclass is a generalised version of a 
subclass. 
 
 



  2008 HSC     Software Design and Development     Marking Guidelines 

 – 19 –  

 
Question 25 (a) (i)  

Outcomes assessed: H1.1, H1.3 

MARKING GUIDELINES 
Criteria Marks 

• Correctly evaluates the expression showing working in binary 2 
• Computation, showing the working, displaying an understanding of the 

procedure 1 

Sample answer/Answers could include:  

10101011 ÷ 00001001

1001 10101011

!1001

1101

!1001

1001

!1001

0

10011

 

 
 



  2008 HSC     Software Design and Development     Marking Guidelines 

 – 20 –  

Question 25 (a) (ii)  

Outcomes assessed: H1.1, H1.3 

MARKING GUIDELINES 
Criteria Marks 

• Describes methods of representing fractions  3 
• Outlines methods of representing fractions 2 
• Identifies a method to represent fractions 1 

Sample answer/Answers could include:  

A discussion of fixed and floating point 
 
• fixed point 

- whole number component converted to binary 
- fraction component converted to binary 

eg 6 !
5
8

:

6 ! 110

5
8
!

1
2

1
+

0
4

0
+

1
8

1

 

 
 

• floating point 
- single and double precision 
- sign bit, mantissa and exponential. 

 
 
 
Question 25 (a) (iii)  

Outcomes assessed: H1.1 

MARKING GUIDELINES 
Criteria Marks 

• Correctly shows how the data would be stored, including correct 
addressing 2 

• Shows an understanding of the storage of data 1 

Sample answer/Answers could include:  

Address Data 
2E 11000110 
2F 11001001 
30 11100010 
31 11001000 

 
 
 



  2008 HSC     Software Design and Development     Marking Guidelines 

 – 21 –  

Question 25 (b) (i)  

Outcomes assessed: H4.1 

MARKING GUIDELINES 
Criteria Marks 

• Provides a purpose of truth tables 1 

Sample answer/Answers could include:  

The purpose of a truth table is to examine the output from a circuit or logic gate. 
 
 
Question 25 (b) (ii)  

Outcomes assessed: H1.1, H4.1 

MARKING GUIDELINES 
Criteria Marks 

• Draws a truth table which is substantially correct 3 
• Draws a truth table which indicates an understanding of truth tables 2 
• Displays some knowledge of the components of truth tables 1 

Sample answer/Answers could include:  

A B C 

 A  

D 
A or B 

E 
C nor D 

0 0 1 0 0 
0 1 1 1 0 
1 0 0 1 0 
1 1 0 1 0 

 



  2008 HSC     Software Design and Development     Marking Guidelines 

 – 22 –  

Question 25 (c) (i)  

Outcomes assessed: H1.1, H1.3 

MARKING GUIDELINES 
Criteria Marks 

• Correctly identifies/calculates the contents of T 2 
• Displays an understanding of the process described 1 

Sample answer/Answers could include:  

R S T 
0 0 0 
1 0 0 
0 1 0 
0 0 0 
1 0 0 
0 1 0 
1 0 0 
1 1 1 

 
 
 
Question 25 (c) (ii)  

Outcomes assessed: H1.1, H1.3 

MARKING GUIDELINES 
Criteria Marks 

• List the 8-bit strings showing substantial understanding 2 
• Lists an 8-bit string which correctly answers the question 1 

Sample answer/Answers could include:  

R 10111101 
!  10111101 
   x        x 
 
Now 
 R and S → !  
So 
 1 and 1  → 1 
but 0 and (0,1) → 0 
 
So 
 
S could be  
  10111101 
  10111111 
  11111101 
or  11111111 



  2008 HSC     Software Design and Development     Marking Guidelines 

 – 23 –  

Question 25 (d) (i)  

Outcomes assessed: H1.1, H1.3, H4.1 

MARKING GUIDELINES 
Criteria Marks 

• Identifies elements of header information, showing substantial 
understanding of header contents 2 

• Identifies components of data packet 1 

Sample answer/Answers could include:  

Headers may contain 
• Start of packet 
• Packet id 
• Destination address 
• Source address 
• Error checking protocol 
• Data protocol 
• Port number 
 
 



  2008 HSC     Software Design and Development     Marking Guidelines 

 – 24 –  

Question 25 (d) (ii)  

Outcomes assessed: H1.1, H1.3, H4.1 

MARKING GUIDELINES 
Criteria Marks 

• Compares and contrasts the contents of data packets; header information, 
data characters and trailer information, from each of the cases 3 

• Describes packets displaying an understanding of data packets 2 
• Displays a limited understanding of the contents of data packets 1 

Sample answer/Answers could include:  

Compare 
USB and scanner both: 
• send packets containing header information, data characters and trailer information. 
• use error checking. 
• use component id. 
 
Contrast 
• Data packets are likely to be of different size (mouse – smaller; scanner – larger) 
• Different error checking protocols may be used (mouse – parity; scanner – more 

sophisticated) 
• Substantially more information in data character stream for the scanner 

– pixel information 
– colour etc 
– size 

 rather than mouse 
– x/y co-ordinates (changes) 
– mouse clicks 
– mouse roller/scroll. 


	2008 HSC Notes from the Marking Centre Software Design and Development
	Section I
	Section II
	Section III

	2008 HSC Examination Mapping Grid
	2008 HSC Marking Guidelines



