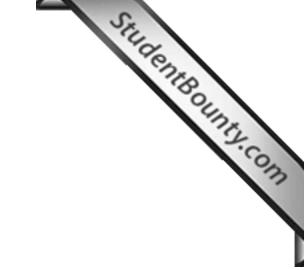
		 - - - - -						25	inde	ARBO AND	\	
Alternative No:	Index No:	0	1	0	0	9				100	MY.C	On
Supervising Exami	ner's/Invigilator's initial:										_	
		1										

Paper 1 (Physics)

Writing Time: $1\frac{1}{2}$ Hours


NEW CURICULUM

Total Marks: 80

READ THE FOLLOWING DIRECTIONS CAREFULLY:

- 1. Do **not** write for the first **fifteen minutes**. This time is to be spent reading the questions. After having read the questions, you will be given **one and a half hours** to answer all questions.
- 2. Write your **index number** in the space provided on the **top right hand corner of this cover page only**.
- 3. In this paper, there are **two** sections: A and B. Section **A** is compulsory. You are expected to attempt **any four** questions from Section **B**.
- 4. The intended marks for questions or parts of questions, are given in brackets [].
- 5. Read the directions to each question carefully and write **all** your answers in the space provided in the **question booklet** itself.
- 6. Remember to write quickly but neatly.
- 7. **Do not** remove or tear off any pages from the question booklet.
- 8. **Do not** draw lines or pictures **on** or in the question booklet to beautify it.
- 9. **Do not** leave the examination hall before you have made sure that you have answered all the questions.

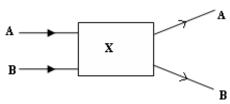
	For Chief Marker's and Markers' Use Only													
Question Number													Total	Chief Marker's
Award														Signature ↓
Markers' initial →														

BCSE/Phy/2009 Page 2 of 24

SECTION A (40 Marks)

Question 1

		Still					
		CENTE					
		SECTION A (40 Marks) Compulsory: To be attempted by all candidates. ctions: Each question in this part is followed by four possible choices of					
		Compaisory. To be unempted by an equations.					
Ques	tion 1						
(a)		ctions: Each question in this part is followed by four possible choices of wers. Choose the correct answer and write it in the space provided. [15]					
(i)	The	gravitational unit of force is					
	A	Newton.					
	B	Dyne.					
	C	Kgf.					
	D	Kg.					
	Ansv	wer:					
(ii)	A single fixed pulley is used because it						
	A	gives 100% efficiency.					
	В	has a low velocity ratio.					
	C	has a high mechanical advantage.					
	D	helps to apply the force in a convenient direction.					
	Ansv	ver:					
(iii)	The	total internal reflection occurs when the angle of incidence is					
	A	equal to the critical angle.					
	B	less than the critical angle.					
	C	greater than the critical angle.					
	D	equal to the angle of refraction.					
	Ansv	wer:					
(iv)	If the	e barometric height suddenly falls, it indicates					
	A	fair weather					
	B	arrival of rain.					
	C	arrival of storm.					
	D	arrival of cyclone.					
	Ansv	ver:					


BCSE/Phy/2009 Page 3 of 24

al length f, the

- (v) When an object is placed at a distance 2f from a convex lens of focal length f, the image formed will be
 - A same size.
 - **B** at infinity.
 - C magnified.
 - **D** diminished.

Answer:....

(vi) The diagram below shows two incident rays A an B which emerge out. The device used in the box marked 'X' is a

- A prism.
- **B** convex lens.
- C concave lens.
- **D** concave mirror.

Answer:.....

- (vii) The pressure inside a liquid with density 'd' at depth 'h' is
 - A hdg.
 - $\mathbf{B} \qquad \frac{h}{dg}$
 - $\mathbf{C} \qquad \frac{hd}{g}$
 - \mathbf{D} hd.

Answer:

DCCDID (2000

		Still
		of the following combination of statements given below best describes a Sudden changes of loudness or intensity. No sudden changes of loudness or intensity. Frequency is generally low.
)	Which noise?	of the following combination of statements given below best describes a
	I.	Sudden changes of loudness or intensity.
	II.	No sudden changes of loudness or intensity.
	III.	Frequency is generally low.
	IV.	Frequency is generally high.
	A	I and II
	B	I and III
	C D	II and IV III and IV
	D	in and iv
	Answe	er:
	If a le	ngth of a given wire is doubled by stretching it, its resistance will increase by
	A	$\frac{1}{4}$ times.
	В	$\frac{1}{2}$ times.
		-
	C	2 times.
	D	4 times.
	Answe	er:
	When	the MCB of a house circuit is switched off, it disconnects the
	A	live wire.
	В	earth wire.
	C	neutral wire.
	D	live and neutral wire.
	Answe	er:
	A fus	e wire must have
	A	low resistance and high melting point.
	B	high resistance and low melting point.
	C	low resistance and low melting point.
	D	high resistance and high melting point.

Page 5 of 24

BCSE/Phy/2009

		Stude
(xii)	When it is	a body of mass 5 kg falls from a height of 1000 cm, the energy possessed by 50J. 500J. 5000J.
	A	50J.
	В	500J.
	\mathbf{C}	5000J.
	D	50000J.
	Answ	/er:
(xiii)	Stean	n produces more severe burns than water at 100°C because
	A	the temperature of steam is much higher than that of water.
	В	steam has high specific heat capacity.
	\mathbf{C}	water has high specific heat capacity.
	D	of the latent heat of steam.
	Answ	/er:
(xiv)	Whe	n a beam of electrons travel through a uniform magnetic field, it follows a
	A	parabolic path.
	В	circular path.
	\mathbf{C}	straight path.
	D	random path.
	Answ	/er:
(xv)		tatements given below are methods to increase the sensitivity of a nometer EXCEPT
	A	taking a coil of small area.
	В	taking a thin and long suspension fibre.
	\mathbf{C}	increasing the number of turns in the coil.
	D	increasing the strength of the magnetic field.

BCSE/Phy/2009 Page 6 of 24

(b) Match each item under Column A with the most appropriate item in Column B. You must rewrite the correct matching pairs in the space provided.

Match each item under Column A You must rewrite the correct mate	ching nairs in the space provided	
	anng pans in the space provided.	KENTHOU!
Column A (i) Work	Column B (a) frequency	·
(ii) Pascal's law	(b) virtual, erect	
(iii) Knife	(c) second class lever	
(iv) Concave lens(v) Loudness	(d) hydrometer	
(v) Loudiess	(e) vector (f) amplitude	
	(g) scalar	
	(h) hydraulic break (i) third class layer	
	(i) third class lever(j) real, inverted	
Fill in the blanks by writing suita	ble words.	
Fill in the blanks by writing suita The apparent weight of a floating		[5
The apparent weight of a floating	body is	[5
The apparent weight of a floating. The apparent loss of weight of a st	body is	
The apparent weight of a floating. The apparent loss of weight of a st When a soft iron bar is introduced	body is tone in water is due to inside a current carrying solenoid, the magnet	
The apparent weight of a floating. The apparent loss of weight of a st When a soft iron bar is introduced	body is tone in water is due to inside a current carrying solenoid, the magnetic	
The apparent loss of weight of a st When a soft iron bar is introduced inside the solenoid will	body is tone in water is due to inside a current carrying solenoid, the magnetic	
The apparent weight of a floating. The apparent loss of weight of a st. When a soft iron bar is introduced inside the solenoid will	body is tone in water is due to inside a current carrying solenoid, the magneticular control of th	
The apparent weight of a floating. The apparent loss of weight of a st When a soft iron bar is introduced inside the solenoid will	body is	ic field
The apparent weight of a floating. The apparent loss of weight of a st. When a soft iron bar is introduced inside the solenoid will	body is tone in water is due to inside a current carrying solenoid, the magneticular control of th	

(c)

(i)

(ii)

(iii)

(iv)

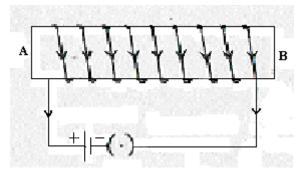
(v)

(d)

(i)

BCSE/Phy/2009 **Page 7 of 24**

(ii) When the internal resistance is negligible, the emf will be **greater** than the terminal (iii) The echo of a sound is not heard in a small room as it overlaps with the **natural** sound. (iv) A red flower appears **red** with green leaves when it is viewed in pure green light. In series connection of resistors, the equivalent resistance is equal to the sum of reciprocal (v) of individual resistance. (e) Answer the following questions. How does the resistance of a wire depend on its length and area? [2] (i) (ii) What will be the angle of refraction, when a ray of light falls normally on a glass block? [1]

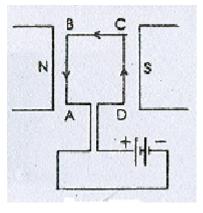

BCSE/Phy/2009 Page 8 of 24

Given specific heat capacity of water = $4.2 \text{ J/g} ^{\circ}\text{C}$) State one difference between photographic camera and human eye in terms of their focusing in the table given below. Photographic camera Human eye How does β – particle differ from an ordinary electron? What happens to the mass number of an element when a β – particle is emitted? Why does the Newton's colour disc painted with VIBGYOR appear greyish or full white when rotated rapidly?		se the temperature of 42g of water from 50°C to 60				
Photographic camera Human eye How does β – particle differ from an ordinary electron? What happens to the mass number of an element when a β – particle is emitted? Why does the Newton's colour disc painted with VIBGYOR appear greyish or	Given specific heat capacity of w	se the temperature of 42g of water from 50°C to 60 evater = 4.2 J/g °C				
Photographic camera Human eye How does β – particle differ from an ordinary electron? What happens to the mass number of an element when a β – particle is emitted? Why does the Newton's colour disc painted with VIBGYOR appear greyish or						
Photographic camera Human eye How does β – particle differ from an ordinary electron? What happens to the mass number of an element when a β – particle is emitted? Why does the Newton's colour disc painted with VIBGYOR appear greyish or						
Photographic camera Human eye How does β – particle differ from an ordinary electron? What happens to the mass number of an element when a β – particle is emitted? Why does the Newton's colour disc painted with VIBGYOR appear greyish or						
Photographic camera Human eye How does β – particle differ from an ordinary electron? What happens to the mass number of an element when a β – particle is emitted? Why does the Newton's colour disc painted with VIBGYOR appear greyish or						
Photographic camera Human eye How does β – particle differ from an ordinary electron? What happens to the mass number of an element when a β – particle is emitted? Why does the Newton's colour disc painted with VIBGYOR appear greyish or						
Photographic camera Human eye How does β – particle differ from an ordinary electron? What happens to the mass number of an element when a β – particle is emitted? Why does the Newton's colour disc painted with VIBGYOR appear greyish or						
Photographic camera Human eye How does β – particle differ from an ordinary electron? What happens to the mass number of an element when a β – particle is emitted? Why does the Newton's colour disc painted with VIBGYOR appear greyish or						
Photographic camera Human eye How does β – particle differ from an ordinary electron? What happens to the mass number of an element when a β – particle is emitted? Why does the Newton's colour disc painted with VIBGYOR appear greyish or						
Photographic camera Human eye How does β – particle differ from an ordinary electron? What happens to the mass number of an element when a β – particle is emitted? Why does the Newton's colour disc painted with VIBGYOR appear greyish or	State <i>one</i> difference between photographic	tographic camera and human eve in terms of their				
Photographic camera Human eye How does β – particle differ from an ordinary electron? What happens to the mass number of an element when a β – particle is emitted? Why does the Newton's colour disc painted with VIBGYOR appear greyish or						
How does β – particle differ from an ordinary electron? What happens to the mass number of an element when a β – particle is emitted? Why does the Newton's colour disc painted with VIBGYOR appear greyish or	oversoming and one of gravers overs					
What happens to the mass number of an element when a β – particle is emitted? Why does the Newton's colour disc painted with VIBGYOR appear greyish or	Photographic camera	Human eye				
What happens to the mass number of an element when a β – particle is emitted? Why does the Newton's colour disc painted with VIBGYOR appear greyish or						
What happens to the mass number of an element when a β – particle is emitted? Why does the Newton's colour disc painted with VIBGYOR appear greyish or						
What happens to the mass number of an element when a β – particle is emitted? Why does the Newton's colour disc painted with VIBGYOR appear greyish or						
What happens to the mass number of an element when a β – particle is emitted? Why does the Newton's colour disc painted with VIBGYOR appear greyish or						
Why does the Newton's colour disc painted with VIBGYOR appear greyish or						
Why does the Newton's colour disc painted with VIBGYOR appear greyish or		an ordinary electron?				
Why does the Newton's colour disc painted with VIBGYOR appear greyish or	How does β – particle differ from	an ordinary electron?				
Why does the Newton's colour disc painted with VIBGYOR appear greyish or	How does β – particle differ from	an ordinary electron?				
Why does the Newton's colour disc painted with VIBGYOR appear greyish or						
Why does the Newton's colour disc painted with VIBGYOR appear greyish or						
	What happens to the mass numbe	or of an element when a β – particle is emitted?				
iun winte when rotated rapidry:	What happens to the mass numbe	or of an element when a β – particle is emitted?				
	What happens to the mass numbe Why does the Newton's colour di	er of an element when a β – particle is emitted?				
	What happens to the mass numbe Why does the Newton's colour di	er of an element when a β – particle is emitted?				

BCSE/Phy/2009 Page 9 of 24

(viii) Mark the magnetic polarity at the ends A and B in the diagram given below.

SECTION B (40 Marks)


Attempt any four questions

A	
Ouestion	7

a)	(i)	State Newton's Second law of motion.	[1]
	•••••		••••
	•••••		••••
	•••••		••••
	(ii)	Write the expression related to Newton's Second law of motion.	[1/2]
			••••
	•••••		••••
	(iii)	A body does 50 joules of work in 5 seconds. What is the power developed?	$[1\frac{1}{2}]$

BCSE/Phy/2009 Page 10 of 24

(b) A rectangular coil ABCD is placed between the pole pieces of a horse shoe magnet a shown in the diagram given below.

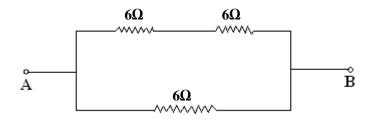
(i)	What is the effect of the force on the coil?	[1]
		,
(ii)	How does the effect of the force on the coil change if the terminals of the battery	
	are interchanged?	[1]
• • • • • •		

(c) (i) Name the radiation A and B emitted in the following radio active decay. [2] $1. \qquad ^{226}X \rightarrow ^{222}_{86}Y + A$

 $2. \qquad {}^{24}_{11}P \rightarrow {}_{12}Q + B$

DCCDD (2000

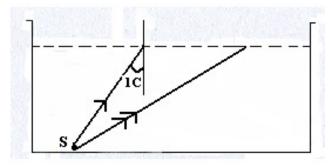
			ch of the radiations alpha, beta and gamma: causes maximum biological damage?	/			
	(ii)	Whi	ch of the radiations alpha, beta and gamma:	OL.			
		1.		13			
		2.	has highest ionizing power?	 [1] 			
	(iii)	Pem	a found the weight of an object in air, water and sea water.	[1]			
		1.	The weight is less in				
		2.	The weight is more in				
Ques	tion 3						
(a)	(i)	State	e the S.I units of	[1]			
		1.	electrical power.				
	•••••	2.	electrical energy.	•••			
	(ii)	Wha	at is the present international colour coding of	[1]			
		1.	live ware?				
	•••••	2.	neutral wire?	•••			
	(iii) State <i>two</i> advantages of a pivoted type of galvanometer over a suspended of galvanometer.						
	•••••						
	•••••			•••			
	•••••	• • • • • • •		•••			


BCSE/Phy/2009 Page 12 of 24

[2]

(b) Is it possible to burn a piece of paper using a convex lens in daylight without using matches or any other direct flame? Draw a diagram to support your answer.

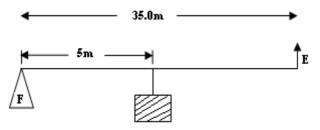
Student Bounty com


(c) Calculate the equivalent resistance between points A and B from the diagram given below.

BCSE/Phy/2009 Page 13 of 24

The diagram given below shows the rays of light traveling from source 'S' placed (d) at the bottom of the beaker containing water. Study the diagram and answer the questions that follow.

Complete the ray marked with two arrows. (i)

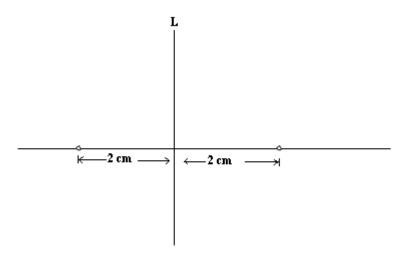


State one condition necessary for the phenomenon exhibited by the ray (ii) [1] marked with two arrows.

Question 4

What is the minimum distance between the source of sound and a reflector so that (a) (i) an echo can be heard distinctly? [1] What is 1 Ohm? Write the mathematical expression for resistance. [2] (ii)

BCSE/Phy/2009 Page 14 of 24 (b) The diagram below shows a lever in use. Study the diagram and answer the questions that follows



(i)	What is the mechanical advantage of the lever?	[1]
••••		
•••••		
(ii)	What is the effort required to lift a load of 20 kg?	[1]

(c)	(i)	Give two reasons why a machine cannot be 100% efficient?			

BCSE/Phy/2009 Page 15 of 24

(ii) A lens having focal length of 2 cm forms a virtual, erect and magnified imag of an object. Complete the ray diagram given below.

(iii)	What will happen to the film in a camera, if the exposure time is more than				
	1 second in day light?	[1]			
•••••		. •			
		. .			

Question 5

(a)	(i)	Define specific latent heat of fusion.	[1]
	•••••		•
	•••••		•
	•••••		•
	(ii)	Why are infra-red radiations used for photography in foggy conditions? Explain.	[2]
	• • • • • • •		•
			•
			•
			•

BCSE/Phy/2009 Page 16 of 24

(b)

(i)

(c) A pumpkin was weighed at Phuentsholing and at Gasa. In which place will the pumpkin		a reason.	[1]
(c) A pumpkin was weighed at Phuentsholing and at Gasa. In which place will the pumpkin			•
(c) A pumpkin was weighed at Phuentsholing and at Gasa. In which place will the pumpkin			
(c) A pumpkin was weighed at Phuentsholing and at Gasa. In which place will the pumpkin			
(c) A pumpkin was weighed at Phuentsholing and at Gasa. In which place will the pumpkin			•
		(ii) Why does an iron nail float in mercury and sink in water?	[2]
			•
			•
			•
			•
			•
weigh more? Justify your answer. [2	(c)	A pumpkin was weighed at Phuentsholing and at Gasa. In which place will the pumpkin	
		weigh more? Justify your answer.	[2]
			•
			•
			•
			•

Can water be used in a barometer instead of mercury? Justify your answer with

BCSE/Phy/2009 Page 17 of 24

Question 6

Oues	tion 6			BOL
(a)	(i)	The s	specific heat capacity of water is 4200J/kg°C. What information does avey?	
	(ii)	Expla	ain the following statements.	•••••
		1.	eta - particles are deviated to a greater extent in a magnetic field than	
			lpha - particles.	[1]
		2.	γ - rays are not deflected in an electric field.	[1]
(b)	(i)	An el	lectric oven is heated at 1500W, 250V and draws a current of 6A.	
		If it is	s connected to a 250V mains, calculate the cost of energy consumed	
		in 20	hours at the rate of Nu. 2 per unit.	[3]

BCSE/Phy/2009 Page 18 of 24

		Stude	
	(i)	Why is copper preferred over aluminum to make calorimeters? Give <i>two</i> reasons.	OUIT
			•••
(c)		ch bulb when cold has 2 Ω resistance. It draws a current of 0.6A when glowing a source of 6V.	
	(i)	Calaculate the resistance when the bulb is glowing.	[1]
	(ii)	Why is there a difference in the resistance?	[1]
Ques	tion 7		
(a)	Give	reasons for the following.	[3]
	(i)	Church bells are very large in size.	
	•••••		•••
			•••
			•••
	•••••		

BCSE/Phy/2009 Page 19 of 24

(b) The diagram below shows the change of state of a substance on a temperature time graph.[2]

Why is the part BC shorter than DE?

D. 60.004

BCSE/Phy/2009

Page 20 of 24

(i)	How is heat capacity related to specific heat capacity?	SOUTH
(ii)	A solid weighs 55 gf in air and 45 gf when completely immersed in water. Calculate the relative density of the solid.	[2]
(iii)	Is any work done by a body when moving in a circular path? Justify.	[1]
• • • • • •		••••
• • • • • •		••••

BCSE/Phy/2009 Page 21 of 24

for Rough Work

VINGERIFBOURTY.COM

BCSE/Phy/2009 Page 22 of 24

for Rough Work

VILIGENT BOUNTS, COM

BCSE/Phy/2009 Page 23 of 24

for Rough Work

VILIGENT BOUNTS, COM

BCSE/Phy/2009 Page 24 of 24