Page 1 of 12

AGA KHAN UNIVERSITY EXAMINATION BOARD

HIGHER SECONDARY SCHOOL CERTIFICATE

CLASS XI EXAMINATION

MAY 2012

Mathematics Paper I

Time allowed: 45 minutes Marks 35

INSTRUCTIONS

- 1. Read each question carefully.
- 2. Answer the questions on the separate answer sheet provided. DO NOT write your answers on the question paper.
- 3. There are 100 answer numbers on the answer sheet. Use answer numbers 1 to 35 only.
- 4. In each question there are four choices A, B, C, D. Choose ONE. On the answer grid black out the circle for your choice with a pencil as shown below.

- 5. If you want to change your answer, ERASE the first answer completely with a rubber, before blacking out a new circle.
- 6. DO NOT write anything in the answer grid. The computer only records what is in the circles.
- 7. You may use a scientific calculator if you wish.

```
Page 2 of 12
       The multiplicative inverse of i^2 is
1.
       A.
               -i
       B. i
       C.
               -1
       D. 1
       If \overline{z} = 2 - i and z = x + yi, then the value of y is equal to
2.
       A.
              -2
            - 1
       B.
       C.
                1
                 2
       D.
3.
       i (iota) is one of the roots of the equation
               x^2 = -2
       A.
              x^2 = -1
       B.
       C. x^2 = 1
       D. x^2 = 2
       \begin{bmatrix} a & b & c \end{bmatrix}
        \begin{vmatrix} 0 & d & e \end{vmatrix} is an example of
4.
        \begin{bmatrix} 0 & 0 & f \end{bmatrix}
       A.
             lower triangular matrix.
       B.
               upper triangular matrix.
       C.
               diagonal matrix.
       D.
               rectangular matrix.
                \begin{bmatrix} 3 & 2 & 3 \end{bmatrix}
       If A = \begin{vmatrix} 5 & 1 & 1 \end{vmatrix}, then the co-factor A_{11} of the element in the first row and first column
5.
               2 1 0
       is equal to
              - 3
       A.
               - 1
       B.
       C.
                 0
       D.
                1
                \begin{bmatrix} 0 & 0 & a \end{bmatrix}
       If A = \begin{vmatrix} 0 & a & 0 \end{vmatrix}, then the determinant of matrix A is equal to
6.
               \begin{vmatrix} a & 0 & 0 \end{vmatrix}
               -a^{3}
       A.
                 a^3
       B.
       C.
                 3a
       D.
               -3a
```

H1201-0711110

Page 3 of 12 If B is a matrix of order $(p \times q)$, then the order of matrix λB is 7. [Note: λ is a scalar] A. $\lambda p \times q$ B. $p \times \lambda q$ C. $\lambda p \times \lambda q$ D. $p \times q$ For any matrix A and B, if |B| = -2 and $A = B^{t}$, then |A| is equal to 8. -2A. B. $-\frac{1}{2}$ $\frac{1}{2}$ C. D. 2 9. In an arithmetic progression if the sixth term is -3 and the fifth term is 2+4d, then the common difference d is equal to A. - 1 B. $-\frac{1}{3}$ C. $-\frac{2}{3}$ D. $-\frac{5}{3}$ The $(n+1)^{th}$ term of the geometric progression $1, -1, 1, -1, \dots$ is 10. $(-1)^{n-1}$ A. B. $(-1)^n$ C. $(-1)^{1-n}$ $(-1)^{n+1}$ D. If the harmonic means H_1 and H_2 between any two numbers are 4 and 6 respectively, then 11. the third term of the associated arithmetic progression is equal to $\frac{1}{4}$ A. $\frac{1}{6}$ B. $\frac{1}{8}$ C. $\frac{1}{10}$ D.

PLEASE TURN OVER THE PAGE

H1201-0711110

Page 4 of 12

The n^{th} term of arithmetico - geometric series is 12.

A. $\{a + (n-1)d\}ar^{n-1}$

- $B. \quad \left\{a+nd\right\}r^{n-1}$
- C. $\{a + (n-1)d\}r^{n-1}$ D. $\{a + nd\}ar^{n-1}$

In factorial form n(n-1) is equal to 13.

> A. *n* ! B. (n - 1)!C. n(n-1)! $\frac{n(n-1)(n-2)!}{(n-2)!}$ D.

If there are *n* different objects to fill up *r* places , then the r^{th} place can be filled in 14.

A. (n - r) ways B. (n - r - 1) ways C. (n - r + 1) ways D. (n + r - 1) ways

If *E* and *F* are independent events and $P(E/F) = \frac{1}{3}$, $P(F) = \frac{1}{4}$, then P(E) is equal to 15.

- $\frac{1}{3}$ $\frac{1}{4}$ $\frac{2}{3}$ $\frac{3}{4}$ A. B.
- C.
- D.

	Page 6 of 12								
20.	If ω is a com A. $\sqrt{\omega}$ B. $\sqrt{\omega} i$ C. $-\omega$ D. ωi	plex cube	root of	unity, th	en $\sqrt{1+a}$	$\overline{p^2}$ is equal	to		
21.	The number of imaginary roots in cube roots of -27 is								
	A. 0 B. 1 C. 2 D. 3								
22.	For the given synthetic division, the value of y is equal to								
		2	1	0	- 1	2	3		
				2	?	у	16		
			1	2	?		19		
23.	A. -6 B. -2 C. 5 D. 6 If $f^{-1}(x) =$ A. $\frac{1}{6}$ B. $\frac{1}{5}$ C. 5 D. 6	5, then f	⁻¹ (x +	- 1) is eq	ual to				
24.	Which of the following inequalities represent/s a closed half plane ?								
	I. $ax + b$ II. $ax + b$ III. $ax + b$	$y \le c$ $y \ge c$ $y < c$							
	A. I onlyB. II onlyC. I and IID. II and I	only II only							

25. Which of the following corner points represent the minimum value of 2x + 2y?

Page 7 of 12

I. (0,4)

- II. (3,1) III. (4,2)
- A. I only
- B. III only
- C. I and II only
- D. II and III only

26. Which of the following objective functions is valid for a linear programming problem ?

- A. maximize f(x, y) = 6xy
- B. maximize $f(x, y) = x^2 + y$
- C. maximize f(x, y) = 2x + 5y
- D. maximize $f(x, y) = \frac{x + y}{x}$

27. Which of the following formulae is the fundamental law of trigonometry ?

A. $\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$ B. $\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$ C. $\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$ D. $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$

28. Which of the following formulas is/are equal to $\cos \theta$?

I.
$$\sin\left(\frac{\pi}{2} - \theta\right)$$

II. $\sin\left(\frac{\pi}{2} + \theta\right)$
III. $\sin\left(\frac{3\pi}{2} - \theta\right)$

A. I onlyB. III onlyC. I and II only

Page	8	of	12
	-		

If $a \sin \theta + b \cos \theta = r \sin (\theta + \alpha)$, then the value of r is equal to 29. A. $a^2 + b^2$ B. $a^2 - b^2$ C. $\sqrt{a^2 + b^2}$ D. $\sqrt{a^2 - b^2}$ The law of cosine $c^2 = a^2 + b^2 - 2ab \cos \gamma$ reduces to $c^2 = a^2 + b^2$, if γ is equal to 30. A. 30° B. 45° C. 60° 90° D. 31. If $\sin \frac{\alpha}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}}$, then the angle $\frac{\alpha}{2}$ lies in the interval A. $0 < \frac{\alpha}{2} < \frac{\pi}{2}$ B. $0 < \frac{\alpha}{2} < \pi$ C. $0 < \frac{\alpha}{2} < \frac{3\pi}{2}$ D. $0 < \frac{\alpha}{2} < 2\pi$

- 32. If a circle is drawn in such a way that it touches the three sides of a triangle, then the circle is called
 - I. circumscribed.
 - II. inscribed.
 - III. escribed.
 - A. I only
 - B. II only
 - C. I and III only
 - D. II and III only

33. The period of $\frac{1}{7} \cos a x$ is

A. $\frac{2\pi}{7a}$ B. $\frac{2\pi}{a}$ C. $\frac{\pi}{7a}$ D. $\frac{\pi}{a}$

34. Which of the following relations is FALSE ?

A. $\sin(-\theta) = -\sin\theta$ B. $\sin(\pi - \theta) = -\sin\theta$ C. $\sin(\theta - \pi) = -\sin\theta$ D. $\sin(\theta + 2\pi) = \sin\theta$

35. Which of the following trigonometric functions is an even function ?

A. $\sin x$ B. $\cos x$ C. $\sin x + \cos x$ D. $\sin x - \cos x$

Page 11 of 12

Please use this page for rough work

