

Mark Scheme (Results)

Summer 2022

Pearson Edexcel AEA In Mathematics (9811) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2022 Question Paper Log Number P67057A Publications Code 9811_01_2206_MS All the material in this publication is copyright © Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question	Scheme	Ma	irks	AOs
1	Writes $f(x) = e^{x^2 \ln x}$ or $y = x^{(x^2)} \Rightarrow \ln y = x^2 \ln x$ Applies $\ln (x)$ an appropriate the set of the		81	2
	$f'(x) = \left(2x\ln x + \frac{x^2}{x}\right)e^{x^2\ln x} \text{ or } \frac{1}{y}\frac{dy}{dx} = 2x\ln x + \frac{x^2}{x} \qquad \begin{array}{c} \text{Differentiat} \\ x^2\ln x \text{ approduct rule} \\ \text{product rule} \end{array}\right)$	plying the	[1	1
	Fully correct differentiated expression (both sides) and must be in base e, thou recovery from "log" if base e is implied later.	ugh allow A	.1	2
	$f'(x) = 0 \Longrightarrow 2x \ln x + x = 0 \Longrightarrow \ln x = -\frac{1}{2} \Longrightarrow x = \dots$ Sets f'(x) or and solves f (allow any b)	for x	M1	2
	$x = \frac{1}{\sqrt{e}}$ oe Correct answ	wer. A	.1	1
	Accept answers from a correct attempt at differentiating $x^2 \ln x$ even if the incorrect. Ignore reference to $x = 0$.	`1/y" was		
		(5	5)	
	· · ·	(Total	5 ma	arks)

Question		Scheme		Marks	AOs
2(a)	E.g. centre point is $\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{Q}$ $\overrightarrow{OR} = 2 \times (\overrightarrow{OQ} - \overrightarrow{OP})$; $\overrightarrow{OS} = \overrightarrow{OQ}$ $\overrightarrow{OT} = \overrightarrow{OQ} - 2\overrightarrow{OP}$		Attempts to find at least one of the other vectors in terms of \mathbf{p} and \mathbf{q} with at least one correct expression (may be in direction vectors) for a key vector.	M1	3
	$\overrightarrow{OR} = 2(\mathbf{q} - \mathbf{p}) \ ; \ \overrightarrow{OS} = 2\mathbf{q} - 3\mathbf{p} \ ;$	$\overrightarrow{OT} = \mathbf{q} - 2\mathbf{p}$	Two correct ; all three correct	A1; A1	2;2
	$\mathbf{R} = \mathbf{p} + 2\mathbf{q} + 3 \times 2(\mathbf{q} - \mathbf{p}) + 4(2\mathbf{q} - \mathbf{p})$	$-3\mathbf{p})+5(\mathbf{q}-2\mathbf{p})=\dots$	Attempts the sum using their expressions with at least one force involving both p and q	M1	1
	$=-27\mathbf{p}+21\mathbf{q}$		Correct answer	A1	3
				(5)	
(b)	E.g. $\mathbf{R} = 21(\mathbf{q} - \mathbf{p}) - 6\mathbf{p}$ and $\mathbf{q} - $ length, <i>p</i> say (regular hexagon s between as per diagram (below)		Formulates a correct strategy – may be other ways, e.g finding length of q relative to p first.	M1	3
	So $ \mathbf{R} ^2 = (6p)^2 + (21p)^2 - 2(6p)^2$ $\left(=(3p)^2 \left(2^2 + 7^2 - 2 \times 7\right) = (3p)^2\right)$, , , , , , , , , , , , , , , , , , ,	Applies cosine rule to appropriate triangle	M1	3
	$ \mathbf{R} ^2 = 39(3p)^2$ or $ \mathbf{R} = 3p\sqrt{39}$		Correct simplified magnitude or its square	A1	2
	$\Rightarrow 3p\sqrt{39} = 3 \times 13 \Rightarrow p = \dots$	Applies $ \mathbf{F} = m \mathbf{a} $ to attempt at modulus (may vectors), not solving a li	, assume perpendicular	M1	3
	$p = \frac{13}{\sqrt{39}} = \frac{\sqrt{39}}{3}$		Correct answer, allow either form.	A1	2
				(5)	
			(Tot	al 10 m	arks)
	agram for (b), using $ \mathbf{p} = \mathbf{q} - \mathbf{p}$ $-6\mathbf{p}$ 60° $21(\mathbf{q}-\mathbf{p})$ 21p	=p or for all o	on next page: $\frac{27p}{60^{\circ}}$ $21q = 21p\sqrt{3}$		

)	$ \mathbf{a} $ p \neg	Formulates a correct	M1	3
	$\frac{ \mathbf{q} }{\sin 120^{\circ}} = \frac{p}{\sin 30^{\circ}} \Rightarrow \mathbf{q} = p\sqrt{3} \text{ (oe method)}$	strategy – e.g finding length of \mathbf{q} relative to \mathbf{p} first.		
	So $ \mathbf{R} ^2 = (27p)^2 + (21p\sqrt{3})^2 - 2(27p)(21p\sqrt{3})\cos 60^\circ$	Applies cosine rule to appropriate triangle;	M1	3
	$\left(=3^{3} p^{2} \left(27+49-63\right)=(3 p)^{2} \times 39\right)$			
		Or may use dot product,		
(Or $ \mathbf{R} ^2 = \mathbf{R}.\mathbf{R} = 21^2 \mathbf{q}.\mathbf{q} + 27^2 \mathbf{p}.\mathbf{p} - 2 \times 21 \times 27 \mathbf{q}.\mathbf{p}$ = $(21q)^2 + (27p)^2 - 2 \times 21 \times 27 \times pq \cos 30^\circ$	though not on spec.		
	$=(21q) + (27p) - 2 \times 21 \times 27 \times pq \cos 50$ Etc.			
	$ \mathbf{R} ^2 = 39(3p)^2$ or $ \mathbf{R} = 3p\sqrt{39}$	Correct simplified magnitude or its square	A1	2
	$\Rightarrow 3p\sqrt{39} = 3 \times 13 \Rightarrow p = \dots$	Applies $ \mathbf{F} = m \mathbf{a} _{\text{to}}$ find <i>p</i> (same constraints)	M1	3
	$p = \frac{13}{\sqrt{39}} = \frac{\sqrt{39}}{3}$	Correct answer, allow either form.	A1	2
			(5)	
]	By resolving:			
	$\frac{ \mathbf{q} }{\sin 120^{\circ}} = \frac{p}{\sin 30^{\circ}} \Longrightarrow \mathbf{q} = p\sqrt{3} \text{ (oe method)}$	Formulates a correct strategy $- e.g$ finding length of q relative to p first.	M1	3
	Let $\mathbf{p} = p\mathbf{i}$ and	Sets up suitable axes and find both vectors in terms of	M1	3
	$\mathbf{q} = p\sqrt{3}\cos 30^\circ \mathbf{i} + p\sqrt{3}\sin 30^\circ \mathbf{j} = \frac{3p}{2}\mathbf{i} + \frac{p\sqrt{3}}{2}\mathbf{j}$	just p and used them to find R (need not be simplified, accept any equivalent		
	$\mathbf{R} = -27(p\mathbf{i}) + 21\left(\frac{3p}{2}\mathbf{i} + \frac{p\sqrt{3}}{2}\mathbf{j}\right) = \frac{9p}{2}\mathbf{i} + \frac{21p\sqrt{3}}{2}\mathbf{j}$	form).		
	$ \mathbf{R} ^{2} = \left(\frac{9p}{2}\right)^{2} + \left(\frac{21p\sqrt{3}}{2}\right)^{2} = \left(\frac{3p}{2}\right)^{2} \left(3^{2} + \left(7\sqrt{3}\right)^{2}\right)$	Correct simplified magnitude or its square	A1	2
	$=\frac{(3p)^2}{4} \times 156 = 39(3p)^2$			
($(so \mathbf{R} = 3p\sqrt{39})$			
	$\Rightarrow 3p\sqrt{39} = 3 \times 13 \Rightarrow p = \dots$	Applies $ \mathbf{F} = m \mathbf{a} $ to find <i>p</i> (same constraints)	M1	3
	$p = \frac{13}{\sqrt{39}} = \frac{\sqrt{39}}{3}$	Correct answer, allow either form.	A1	2
	•			

Question	Scheme		Marks	AOs
3(a)	$\tan(90^{\circ} - \theta) = \frac{\sin(90^{\circ} - \theta)}{\cos(90^{\circ} - \theta)}$	Writes in terms of sin and cos	M1	1
	$=\frac{\sin 90^{\circ}\cos\theta - \cos 90^{\circ}\sin\theta}{\cos 90^{\circ}\cos\theta + \sin 90^{\circ}\sin\theta}$	Applies both formulae (must be right signs).	M1	2
	$=\frac{\cos\theta-0}{0+\sin\theta}=\frac{\cos\theta}{\sin\theta}=\cot\theta *$	Correct completion (S+ for anyone who investigates <i>k</i> 180°)	A1*	2
			(3)	
(b) Way 1	$2 - \sec^2\left(\theta + 11^\circ\right) = 2\tan\left(\theta + 11^\circ\right)\tan\left(\theta - 34^\circ\right)$			
	$\Rightarrow \cot\left(\theta - 34^{\circ}\right) = \frac{2\tan\left(\theta + 11^{\circ}\right)}{2 - \left(1 + \tan^{2}\left(\theta + 11^{\circ}\right)\right)}$	Applies either $\sec^2 x = 1 + \tan^2 x$ or rearranges to make $\cot(\theta - 34^\circ)$ the subject	M1	3
	$\Rightarrow \cot\left(\theta - 34^{\circ}\right) = \frac{2\tan\left(\theta + 11^{\circ}\right)}{1 - \tan^{2}\left(\theta + 11^{\circ}\right)} = \tan\left(2(\theta + 11^{\circ})\right)$	Identifies tan 2t formula and replaces.	M1	3
	$\Rightarrow \tan\left(90^{\circ} - (\theta - 34^{\circ})\right) = \tan\left(2\theta + 22^{\circ}\right)$	Uses result from (a) appropriately ; correct equation	M1; A1	3 2
	$124^{\circ} - \theta = 2\theta + 22^{\circ} (+k180^{\circ}) \Longrightarrow \theta = \dots$ (S+ for good explanation of additional roots)	Solves for at least one value for θ	dM1 (S+)	3
	$\theta = 34^{\circ}, 94^{\circ}, 154^{\circ}, 214^{\circ}, 274^{\circ}, 334^{\circ}$ Must be from correct work.	At least one correct. At least 3 correct All correct answers and no others.	A1 A1 A1	3 2 2
			(8)	
	S+ for appropriate substitution to make working easier	er.		
	 Award S1 for: a fully correct solution that is succinct but does n point a solution scoring 9+ marks that may be laboured point 		S1	2
	 a solution scoring 9+ marks that may be laboured point 		11+1 m	18

(b) Way 2	$2 - \sec^{2}\left(\theta + 11^{\circ}\right) = 2\tan\left(\theta + 11^{\circ}\right)\tan\left(\theta - 34^{\circ}\right)$			
Way 2	$2\cos^{2}\left(\theta+11^{\circ}\right)-1=2\sin\left(\theta+11^{\circ}\right)\cos\left(\theta+11^{\circ}\right)\tan\left(\theta-34^{\circ}\right)$	Multiplies through by \cos^2 .	M1	3
	$\cos 2(\theta + 11^{\circ}) = \sin 2(\theta + 11^{\circ})\tan(\theta - 34^{\circ})$	Replaces with double angle formula	M1	3
	$\Rightarrow \tan\left(\theta - 34^{\circ}\right) = \cot\left(2\theta + 22^{\circ}\right) = \tan\left(90^{\circ} - (2\theta + 22^{\circ})\right)$	Uses result from (a) appropriately; correct equation	M1; A1	3 2
	$\theta - 34^{\circ} = 68^{\circ} - 2\theta (+k180^{\circ}) \Longrightarrow \theta =$ (S+ for good explanation of additional roots)	Solves for at least one value for θ	dM1 (S+)	3
	$\theta = 34^{\circ}, 94^{\circ}, 154^{\circ}, 214^{\circ}, 274^{\circ}, 334^{\circ}$ Must be from correct work.	At least one correct. At least 3 correct All correct answers no no extras	A1 A1 A1	3 2 2
			(8)	
(b) Way 2	$2 - \sec^{2}\left(\theta + 11^{\circ}\right) = 2\tan\left(\theta + 11^{\circ}\right)\tan\left(\theta - 34^{\circ}\right)$			
Way 3	$2 - \sec^{2}(\theta + 11^{\circ}) = 2\tan(\theta + 11^{\circ})\tan(\theta + 11^{\circ} - 45^{\circ})$ $\Rightarrow 2 - (1 + \tan^{2}(\theta + 11^{\circ})) = 2\tan(\theta + 11^{\circ})\frac{\tan(\theta + 11^{\circ}) - \tan 45^{\circ}}{1 + \tan(\theta + 11^{\circ})\tan 45^{\circ}}$	Applies either $\sec^2 x = 1 + \tan^2 x$ or compound angle formulae on tan as shown.	M1	3
	$\Rightarrow 1 - \tan^{2}\left(\theta + 11^{\circ}\right) = 2\tan\left(\theta + 11^{\circ}\right)\frac{\tan\left(\theta + 11^{\circ}\right) - 1}{1 + \tan\left(\theta + 11^{\circ}\right)}$	Attempts both formulae and applies tan45°=1	- M1	3
	$1 - \tan\left(\theta + 11^{\circ}\right) = 0 \Longrightarrow \theta + 11^{\circ} = 45^{\circ}, 225^{\circ} \Longrightarrow \theta = \dots$	Identifies and solves - this factor to $\theta =$	- dM1	2
	$\theta = 34^{\circ}, 214^{\circ}$ from correct work	Both values and no others from this equation.	A1	3
	Or $\left(1 + \tan\left(\theta + 11^\circ\right)\right)^2 = -2\tan\left(\theta + 11^\circ\right) \Longrightarrow \tan\left(\theta + 11^\circ\right) =$	Solves the remaining quadratic in tan	_dM1	3
	$\tan\left(\theta+11^{\circ}\right)=-2\pm\sqrt{3} \text{ oe}$	Correct values for $\tan(\theta + 11^\circ)$	Al	2
	$\theta = 94^{\circ}, 154^{\circ}, 274^{\circ}, 334^{\circ}$ from correct work	At least two correct. All four correct and no extras from this equation. Must be exact degree answers.	A1 A1	3 2
			(8)	

Question	Scheme		Marks	AOs
4(a)	$f'(x) = \left(ax^2 + b\right)e^{x^3 - 2x}$	Valid attempt at chain rule. (Allow <i>b</i> =0)	M1	1
	$f'(x) = (3x^2 - 2)e^{x^3 - 2x}$	Correct derivative	A1	1
			(2)	
(b)	$g(x) = h(x) \Longrightarrow 8x^{3}e^{x^{3}-2x} = (3x^{5}+4x)e^{x^{3}-2x}$ $\Longrightarrow 8x^{3} = 3x^{5}+4x$	Equates and cancels or factorise out exponentials	M1	1
	$\Rightarrow x(3x^4-8x^2+4) = 0 \Rightarrow x(3x^2-2)(x^2-4) = 0$	(-2) = 0 Factorises or equivalent. (May cancel the x)	M1	2
	(x > 0) (S+ reason for rejecting others) so $x = \sqrt{\frac{2}{3}} = \frac{\sqrt{6}}{3}$ or $x = \sqrt{2}$	A1 for one correct, A2 for both. (Allow if negatives not rejected.)	A1 A1 (S+)	1 1
			(4)	
(c)	Area = $\int_{\alpha}^{\beta} (8x^3 - 3x^5 - 4x)e^{x^3 - 2x} dx$	Allow either way round (limits may not be included yet) must be combined.	M1	1
	Integral = $(-)\int (x^3 - 2x) \cdot (3x^2 - 2) e^{x^3 - 2x} dx^3$ = $(-)\left[(x^3 - 2x) e^{x^3 - 2x} - \int (3x^2 - 2x) e^{x^3 - 2x} - \int (3x^2$	(Limits may or may	M1 A1	33
	$= \pm \left(-(x^3 - 2x)e^{x^3 - 2x} + e^{x^3 - 2x} \right)$	Correct result after second integral	A1	3
	$\left[e^{x^3 - 2x} - (x^3 - 2x) e^{x^3 - 2x} \right]_{\frac{\sqrt{6}}{3}}^{\sqrt{2}} = \dots$	Applies their limits from (b) either way round	M1	3
	$= (1) - \left(1 - \frac{6\sqrt{6}}{27} + 2\frac{\sqrt{6}}{3}\right) e^{\frac{6\sqrt{6}}{27} - 2\frac{\sqrt{6}}{3}}$	Simplifies at least the 1 correctly following a correct expression. Must be correct sign by this stage.	A1	3
	$=1-\frac{(4\sqrt{6}+9)}{9}e^{-\frac{4\sqrt{6}}{9}}$ oe simplified	Correct in a simplified form. (S+ if any reasoning for correct sign given)	A1 (S+)	3
			(7)	
	 Award S1 for: a fully correct solution that is succinc points a fully correct solution that may be la A succinct solution that scores 10+ m point. 	boured but includes an S+ point	S1	2

(Total 13+1 marks)

S+ See notes in scheme.

Alt for integration marks – may use substitution			
$u = x^{3} - 2x \Longrightarrow \frac{du}{dx} = 3x^{2} - 2 \text{ so integral becomes}$ Integral = $-\int ue^{u} du = -\left[ue^{u} - \int e^{u} du\right]$	Applies substitution and attempts to integrate to at least the first stage (may be implied by a correct result of the integral)	M1	3
$=e^{u}-ue^{u}$	Correct result in terms of <i>u</i>	A1	3
$= e^{x^3 - 2x} - (x^3 - 2x)e^{x^3 - 2x}$ or correct <i>u</i> limits $-\frac{4\sqrt{6}}{9}$ and 0	Correct integral in terms of x OR correct limits for u identified.	A1	3

uestion	Scheme				Marks	AO
5(a)	Taking the point where the plane leaves the rule as positive <i>or</i> setting up other alternative axes coordinates ($Vt \cos \alpha$, $Vt \sin \alpha$) and ($2Vt - \alpha$) Or ($Vt \cos \alpha + d$, $Vt \sin \alpha$) and ($2Vt$, 3)	s At t	ime <i>t</i> pectiv	the planes have vely	(S+)	
	Vertical distance at time t is $h_v = Vt \sin \alpha$]	Establishes correct vertical distance.	B1	2
	Horizontal distance between planes is giv $Vt \cos \alpha - (2Vt - d)$	en by	(Correct attempt at horizontal distance.	M 1	1
	$D^{2} = \left(\frac{4}{5}Vt - 2Vt + d\right)^{2} + \left(\frac{3}{5}Vt - 3\right)^{2} = \left(\frac{6}{5}Vt - d\right)^{2}$	$+\left(\frac{3}{5}Vt-\right)$	$3 \right) * _{1}$	Correct proof including correct trig ratios (terms inside brackets either way)	A1*	1
					(3)	
(b)	$D \ge 2 \Longrightarrow D^2 \ge 4$ $\Rightarrow \left(d - \frac{6}{5}Vt\right)^2 + \left(\frac{3}{5}Vt - 3\right)^2 \ge 4$	squared	. (If us	ality with their distance sing D then must t 4) Accept with \geq	M1	3
	$\Rightarrow \frac{9}{5}(Vt)^2 - \left(\frac{12d+18}{5}\right)Vt + d^2 + 5 \ge 0$		t or (V	collects to a quadratic $(t)/5$ etc. (Inequality ect)	- M1	3
	$b^{2} - 4ac \leqslant 0 \Rightarrow \frac{36(2d+3)^{2}}{25} \leqslant 4 \times \frac{9}{5}(d^{2}+5)$ $\frac{9}{5}\left(Vt - \frac{2d+3}{3}\right)^{2} - \frac{9}{5}\left(\frac{2d+3}{3}\right)^{2} + \left(5 + d^{2}\right)$	to quadratic in t (oe) and		M1	3	
	$\Rightarrow (4d^2 + 12d + 9) \leqslant 5(d^2 + 5) \Rightarrow d^2 - 12d$	′+16≥0		Correct 3TQ quadratic inequality	A1	3
	C.V.s are $\frac{12 \pm \sqrt{144 - 4 \times 16}}{2} = \dots$			Attempts critical values for their quadratic.	-dM1	1
	Depends on second M and having attempted b^2 – completion of square, to produce a quadratic in <i>d</i>		with =	or any inequality, or		
	Need $d \leq 6 - 2\sqrt{5}$ and $d \geq 6 + 2\sqrt{5}$		0	Chooses "outsides"	M1	2
	(Second aircraft is behind first at start so Hence $0 < d \le 6 - 2\sqrt{5}$ or $d \ge 6 + 2\sqrt{5}$	<i>d</i> > 0)	((Explains $d > 0$) Correct solution but allow < or \leq at 0	(S+) A1	3
					(7)	
	Award S1 for: • a fully correct solution that is succinct by • a fully correct solution that may be labor • A succinct solution that scores 8+ marks	ured but	includ	es an S+ point	S1	2
	1			(Total	10+1 r	nark
+ for cle	ar set up of vector coordinates (oe); Expl	anation	ofw	× *		

Alt (b) By calculus	$\frac{d}{dt}(D^2) = 2\left(\frac{6}{5}Vt - d\right) \times \frac{6V}{5} + 2\left(\frac{3}{5}Vt - d\right) \times \frac{3V}{5} \text{ or}$ $D^2 = \frac{9V^2t^2}{5} - \frac{(12d + 18)Vt}{5} + d^2 + 9 \rightarrow$ $\frac{d}{dt}(D^2) = \frac{18V^2t}{5} - \frac{(12d + 18)V}{5}$	May use other notation. Attempts to differentiate D^2 wrt t	M1	3
	$\frac{\mathrm{d}}{\mathrm{d}t} \left(D^2 \right) = 0 \Longrightarrow t = \frac{2d+3}{3V}$	Sets derivative to zero and solves for <i>t</i> or <i>kVt</i> (need not be simplified)	M1	3
	$\operatorname{Min} D^{2} = \left(\frac{6V}{5} \left(\frac{2d+3}{3V}\right) - d\right)^{2} + \left(\frac{3V}{5} \left(\frac{2d+3}{3V}\right) - 3\right)^{2}$ $= \left(\frac{6-d}{5}\right)^{2} + \left(\frac{2(d-6)}{5}\right)^{2} = \frac{1}{5}(d-6)^{2}$	Applies t value to the formula for D^2 (may use their expanded form) need not be simplified.	M1	3
	Hence $\frac{1}{5}(d_{2\text{km}} - 6)^2 = 2^2$	Correct equation or inequation using the given condition.	A1	3
	$\Rightarrow (d_{2\rm km} - 6)^2 = 20 \Rightarrow d_{2\rm km} = 6 \pm \sqrt{20}$	Attempts critical values for their quadratic (allow from inequality)	dM1	1
	Need $d \leq 6 - 2\sqrt{5}$ and $d \geq 6 + 2\sqrt{5}$	Chooses "outsides"	M1	2
	(Second aircraft is behind first at start so $d > 0$) Hence $0 < d \le 6 - 2\sqrt{5}$ or $d \ge 6 + 2\sqrt{5}$	(Explains $d > 0$) Correct solution but allow < or \leq at 0	(S+) A1	3
			(7)	

Question	Scheme			Marks	AOs
6(a)	(Let length of L_n be S_n then $S_0 = 4$ and $S_1 = 5$) has 3 horizontal and 2 sloped segments) so	$\frac{4}{4} = 5$ and	(For a good explanation of their formula)	(S+)	
	$S_2 = 3 \times 5 \times \frac{1}{4} + 2$ or $2 + 9 \times \frac{1}{4} + 6 \times \frac{1}{4}$ oe		A correct expression/ identifies correct terms	M1	1
	$=\frac{23}{4}*$		Correctly shown	A1*	1
				(2)	
(b)(i)	There are 3^n horizontal line segments sides i	n the L_n	Correct answer only	B1	2
(ii)	6		cao	B1	1
	(Each horizontal line splits to 3 new horizont and 2 new sloped lines)	al lines	(S+ for explanation)	(S+)	
(iii)	There are 2×3^n new sloped lines.		for 2×their (b)(i)	B1ft	2
				(3)	
(c)	$(S_{n+1}) = (0+)2 \times 1 + 6 \times \frac{1}{4} + 18 \times \left(\frac{1}{4}\right)^2 + \dots$	length	by working out the of sloped sides – may or S_{n+1}	M1	3
			e general term for	M1;	3
	$\left \begin{array}{c} (1) \\ +5 \times 2^n \times (1)^n \end{array} \right $	orizontals;	and considers the Correct expression n) either added eparately.	A1	2
	$= 2 \times \sum_{r=0}^{n} \left(\frac{3}{4}\right)^{r} + 3 \times \left(\frac{3}{4}\right)^{n} \text{ (oe)}$		ses a G.S. excluding term (accept ents)	M1	2
	$\rightarrow 2 \times \frac{1}{1 - \frac{3}{4}} (+3 \times 0) (as \left(\frac{3}{4}\right)^n \rightarrow 0 \text{ as } n \rightarrow \infty$)	Applies sum of GS (S+ for explanation of last term disappearing)	M1 (S+)	3
	So $S_{\infty} = 8$		Correct answer	A1	3
				(6)	
(d)	Area = $\frac{(a+b)h}{2} = \frac{(2+1)\times 1\sin(60^\circ)}{2} = \dots$ Or height of trapezium is $\sqrt{1^2 - (\frac{1}{2})^2} = \frac{\sqrt{3}}{2}$ so Area $\frac{(a+b)h}{2} = \frac{(2+1)\times h'}{2} = \dots$		Correct method to find the height of the trapezium (trig or Pythagoras) and applies correct area formula	M1	1
	$=\frac{3\sqrt{3}}{4}$		Correct answer	A1	1
				(2)	

(e)	the area of the one in the first iteration. OR number of new trapezia. Accept from iteration 1 to 2, or between any two.			1
	In the $(n+1)$ th iteration the new trapezia have area $\left(\frac{1}{16}\right)^n$ and there are 3^n such, so area scales by $\left(\frac{3}{16}\right)$ (Allow if indices out by 1)	together in relation to	M1 (S+)	3
	So increase in area is $\left(\frac{1}{16}\right)^n \times \frac{3\sqrt{3}}{4} \times 3^n$	Correct expression	A1	3
			(3)	
(f)	$A_{\infty} = \frac{3\sqrt{3}}{4} + 3 \times \frac{3\sqrt{3}}{4 \times 16} + 3^2 \times \frac{3\sqrt{3}}{4 \times 16^2} + \dots + \left(\frac{3}{16}\right)^n \times \frac{3\sqrt{3}}{4 \times 16^2} $	$\frac{3\sqrt{3}}{4} + \dots$	M1	3
	Correct consideration of the area – sum of their te	erm from (e) attempted		
	$=\frac{3\sqrt{3}}{4}\times\frac{1}{\sqrt{3}}$ express	et unsimplified ssion follow through e) as long as it is a	A1ft	3
	$=\frac{12\sqrt{3}}{13}$		A1	3
			(3)	
(g)	Area of triangle is $\frac{1}{2}a^2 \sin(60^\circ) = \frac{a^2\sqrt{3}}{4}$ so limiting area of shape is $\frac{a^2\sqrt{3}}{4} + 3 \times \left(\frac{a}{4}\right)^2 \times \frac{12\sqrt{3}}{13}$	Finds area of triangle and attempts to add $(3\times)$ a scaled area from (f). Accept e.g. with $\frac{a}{4}$ or a^2 for this mark.	M1	1
	$\frac{a^2\sqrt{3}}{4} + 3 \times \left(\frac{a}{4}\right)^2 \times \frac{12\sqrt{3}}{13} = 26\sqrt{3} \Longrightarrow a^2 = \dots$	Applies correct $3 \times$ scaling to area from (f) and solves as far as a^2	dM1	3
	$\Rightarrow a = \frac{26}{\sqrt{11}} = \frac{26\sqrt{11}}{11}$ (Accept either)	th 4 hofore cooling	A1	3
	Alt : may find whole area for triangle of side leng	ui 4 betore scaling.		
			(3)	
	Award S2 for a solution scoring 20+ marks that is some S+ points (see notes below). Award S1 for:	succinct and includes	S2	2 2

 a fully correct solution that is succinct but does not mention any S+ points 	
• a fully correct solution that may be laboured but includes an S+ point	
 A succinct solution that scores 18+ marks that includes at least one S+ point. 	

(Total 22+2 marks)

Note: S+ :	marks for good explanations at the point inc	licated.			
(c) Alt 1 (Further maths)	$L_{n+1} = \frac{1}{4} \times L_n \times 3 + 2, \ L_0 = 4$		Identifies a recurrence relation for the total length.	M1	3
	$\Rightarrow L_n = \alpha + \beta \left(\frac{3}{4}\right)^n$	Identifies general form for the solution; correct general form. May consider an complementary and particular part separately.		M1; A1	3 2
	E.g. $L_0 = 4 \Rightarrow \alpha + \beta = 4, L_1 = 5 \Rightarrow \alpha + \frac{3}{4}\beta = 5 \Rightarrow \alpha$ or 3		Full method to find the constants. $\alpha = 8, \beta = -4$	M1	2
	$PS: \alpha = 2 + \frac{3}{4}\alpha \Longrightarrow \alpha =, L_0 = 4 \Longrightarrow \beta =$ $L_n = 8 - 4\left(\frac{3}{4}\right)^n \to 8 (as\left(\frac{3}{4}\right)^n \to 0 \text{ as } n \to 0$		Evaluates limit (S+ for explanation of term disappearing)	M1 (S+)	3
	So $L_{\infty} = 8$		Correct answer	A1	3
				(6)	
(c) Alt 1	$L_0 = 4, L_1 = 5, L_2 = \frac{23}{4}, L_3 = \frac{101}{6} \left(= 2 + 6 \times \frac{1}{4} + \frac{1}{6} \right)$	$-5 \times 9 \times \frac{1}{16}$	Investigates total lengths for first first terms up to L_3	M1	3
	$\implies L_n = 4 + 1 + \frac{3}{4} + \ldots + \left(\frac{3}{4}\right)^{n-1}$	$L_n = 4 + 1 + \frac{3}{4} + \dots + \left(\frac{3}{4}\right)^{n-1}$ Attempts to form the general expression for total length; correct expression (so an expression for total length of a general iteration)		M1; A1	3 2
	Note inaccuracy with the first term loses the A, e.g.	$5 + \sum_{r=1}^{n} \left(\frac{3}{4}\right)^{r}$	¹ is A0		
	$\Rightarrow L_n = "4" + \sum_{r=1}^n \left(\frac{3}{4}\right)^{r-1}$		Identifies Geometric series identified within the total length	M1	2
	$L_{\infty} = 4 + \frac{1}{1 - \frac{3}{4}}$		Applies sum of GS (S+ for dealing well with first term)	M1 (S+)	3
	So $L_{\infty} = 8$		Correct answer	A1	3
				(6)	

Question	Scheme			AOs
7(a)	$C: (x-a)^{2} + (y-b)^{2} = r^{2}; l: y = mx + c$ Meet when $(x-a)^{2} + (mx+c-b)^{2} = r^{2} \Rightarrow x^{2} + + m^{2}x^{2} + = r^{2}$	Attempts to substitute $y = mx$ + c into $(x \pm a)^2$ + $(y \pm b)^2 = r^2$ and expands	M1	1
	$\Rightarrow x^{2} - 2ax + a^{2} + m^{2}x^{2} + 2mx(c-b) + (c-b)^{2} = r^{2}$ $\Rightarrow (m^{2} + 1)x^{2} - 2(a - m(c-b))x + a^{2} + (c-b)^{2} - r^{2} = 0*$	Achieves correct result with intermediate step.	(S+) A1*	2
			(2)	
(b)	$4(a - m(c - b))^{2} - 4(m^{2} + 1)(a^{2} + (c - b)^{2} - r^{2}) = 0$ (a) (a) (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	Explanation) ttempts $b^2 - 4ac =$ on equation from) (allow if slips e.g. gn error copying rms).	(S+) M1	3
	$\Rightarrow 0 = 4a^{2} - 8am(c-b) + 4m^{2}(c-b)^{2}$ $-4m^{2}a^{2} - 4m^{2}(c-b)^{2} + 4m^{2}r^{2} - 4(a^{2} + (c-b)^{2} - r^{2})$	Expands both brackets ; Any correct expansion	M1 A1	1 2
	$\Rightarrow (c-b)^{2} + 2am(c-b) + m^{2}a^{2} - m^{2}r^{2} - r^{2} = 0$ or $c^{2} + 2(am-b)c + b^{2} - 2amb + m^{2}a^{2} - m^{2}r^{2} - r^{2} = 0$ or $b^{2} - 2(am+c)b + c^{2} + 2amc + m^{2}a^{2} - m^{2}r^{2} - r^{2} = 0$	Cancels terms and forms a quadratic in c or b or $(c-b)$ (oe)	M1	3
	$\Rightarrow [(c-b) + am]^{2} - a^{2}m^{2} + a^{2}m^{2} - r^{2}(m^{2}+1) = 0 \Rightarrow c =$ or e.g. (or equivalent for b) $c = \frac{-2(am-b) \pm \sqrt{4(am-b)^{2} - 4(b^{2} - 2amb + m^{2}a^{2} - m^{2}r^{2} - r^{2})}}{2}$	Solves via completing the square or formula	dM1	3
	$\Rightarrow c = b - am \pm r\sqrt{m^2 + 1} *$	Correct result with no errors seen.	A1*	2
			(6)	
(c)	All normals to a circle must pass through the centre, so there is only one common normal, the line through both centres. Alt. Use differentiation and obtain unique solution.	Explains normals pass through centres, so only one - ie justifies only one.	B1	2
	C_1 has centre <i>O</i> and C_2 has centre (10,5) so equation is $(y-0) = \frac{5}{10}(x-0)$ Extra and a equat		M1	1
	so $y = \frac{1}{2}x$ or any equivalent (eg $2y - x = 0$) Correct equation		A1	1
			(3)	
(d)	C_1 has centre (0,0) and radius 4, and C_2 has centre At	tempts to find	M1	2

$(10,3)$ and radius $\sqrt{100+23}=83=\sqrt{30}=0$	centre and radius for each circle (may be seen in (c)		
(Horizontal distance between the centres is 10 and sum of radii is 10 so there is a common vertical tangent) One common tangent is $x = 4$	(Explains and) identifies the vertical common tangent	(S+) B1	
$0 - 0m \pm 4\sqrt{m^2 + 1} = c = 5 - 10m \pm 6\sqrt{m^2 + 1}$ wi an	ses the result of (b) th both their centres d radii (these uations imply first M)	M1	
$\pm 10\sqrt{m^2+1} = 5 - 10m \Longrightarrow 4(m^2+1) = 1 - 4m + 4m^2 \Longrightarrow m =$	Attempts and solves this combination of signs	M1	
$\Rightarrow m = -\frac{3}{4}$	Correct <i>m</i> from first equation above (and not rejected)	A1	
Other possibility is $\pm 2\sqrt{m^2 + 1} = 5 - 10m \Rightarrow 4(m^2 + 1) = 25 - 100m + 100m$	Attempts the other possibility of signs	M1	
or $96m^2 - 100m + 21 = 0 \implies (24m - 7)(4m - 3) = 0$ $\implies m = \frac{3}{4}, \frac{7}{24}$	Attempts to solve a quadratic in <i>m</i> . Depends on previous M	dM1	
For $m = \pm \frac{3}{4}$: $c = \pm 4\sqrt{\frac{9}{16} + 1} = \pm 4\sqrt{\frac{25}{16}} = \pm 5$ (or $c = 5 - 10(\pm \frac{3}{4}) \pm 6\sqrt{\frac{9}{16} + 1} = 5 \pm \frac{15}{2} \pm 6\sqrt{\frac{25}{16}}$ = 5 or 5 ± 15) or	Attempts to find <i>c</i> for at least one value of <i>m</i> ; Obtains one	M1 A1	
$ = 5 \text{ or } 5 \pm 15 \text{) or } $ for $m = \frac{7}{24}$: $c = \pm 4\sqrt{\frac{7^2}{24^2} + 1} = \pm 4\sqrt{\frac{25^2}{24^2}} = \pm \frac{25}{6} $ (or $c = 5 - 10\left(\frac{7}{24}\right) \pm 6\sqrt{\frac{7^2}{24^2} + 1} = 5 - \frac{35}{12} \pm \frac{25}{4}$)	correct equation (box below) ; Attempts to find <i>c</i> for all values of <i>m</i>	M1	
The only possibilities satisfying both equations for <i>c</i> are $y = -\frac{3}{4}x + 5$; $y = \frac{3}{4}x + 5$ and $y = \frac{7}{24}x - \frac{25}{6}$	e All three equations found and no others.	A1	
		(11)	
 Award S2 for a solution scoring 20+ marks that is successome S+ points (see notes below). Award S1 for: a fully correct solution that is succinct but does not points a fully correct solution that may be laboured but in A succinct solution that scores 18+ marks that inclupoint. 	mention any S+ cludes an S+ point	S2	

Note: S+ marks for good explanations at the points indicated (o appropriate other places).

Alternatives for 7(b)

Alternati	ves for 7(b)				
(b)	$2(x-a)+2(y-b)\frac{dy}{dx}=0$		Differentiates circle equation implicitly.	(S+) M1	2
	$\frac{\mathrm{d}y}{\mathrm{d}x} = m \Longrightarrow m(y-b) = a - x \Longrightarrow x = \dots \text{ or } y = \dots$	Sets $\frac{\mathrm{d}y}{\mathrm{d}x} = 1$	<i>m</i> and solves	M1	1
	with $y = m$ x or y		ix + c leading to		
	$x = \frac{a + m(b - c)}{m^2 + 1}, y = \frac{ma + m^2b + c}{m^2 + 1}$		Obtains <i>x</i> and <i>y</i> coordinates	M1	3
	$\Rightarrow \left(\frac{a+m(b-c)}{m^2+1}-a\right)^2 + \left(\frac{ma+m^2b+c}{m^2+1}-b\right)^2 = r^2$		Substitutes coordinates into circle equation.	dM1	3
	$\Rightarrow \left(\frac{a+m(b-c)-(m^{2}+1)a}{m^{2}+1}\right)^{2} + \left(\frac{ma+m^{2}b+c-(m^{2}+1)b}{m^{2}+1}\right)^{2} = r^{2}$ $\Rightarrow \left(\frac{m(b-c-ma)}{m^{2}+1}\right)^{2} + \left(\frac{ma+c-b}{m^{2}+1}\right)^{2} = r^{2} \Rightarrow \left(m^{2}+1\right) \left(\frac{ma+c-b}{m^{2}+1}\right)^{2} = r^{2}$ $\Rightarrow \left(ma+c-b\right)^{2} = (m^{2}+1)r^{2}$		Uses algebra (e.g. expanding) to identify common factors and reduce to equation shown or equivalent.	dM1;	3
	$\Rightarrow c = b - am \pm r\sqrt{m^2 + 1} *$		Correct result with no errors seen.	A1*	2
				(6)	
(b)	Let <i>A</i> be where tangent meets <i>y</i> -axis and <i>B</i> be (0, <i>b</i>). (Both triangle <i>XPA</i> and <i>XAB</i> are right-angled so) $r^2 + PA^2 = XA^2 = a^2 + (b-c)^2$ and $PA^2 = p^2 + (q-c)^2$ from triangle <i>PAC</i> where <i>C</i> is (0,q)		(Good explanation) Sets up triangles and applies Pythagoras to $\triangle XPA & \triangle XAP$	(S+) M1	2
	So $r^2 + p^2 + (q-c)^2 = a^2 + (b-c)^2$		Combines equations	M1	1
	$\Rightarrow r^{2} + p^{2} + (q - c - (b - c))(q - c + (b - c)) = a^{2}$ $\Rightarrow (q - b)(q + b - 2c) = a^{2} - r^{2} - p^{2}$ $\Rightarrow c = \frac{r^{2} + p^{2} + q^{2} - a^{2} - b^{2}}{2(q - b)}$		Simplifies to eliminate c^2 terms and makes <i>c</i> the subject	M1	3
	(But circle has equation $p^2 - 2ap + a^2 + q^2 - 2bq + b^2 - r^2 = 0$ so) $= \frac{2r^2 + 2ap + 2bq - 2(a^2 + b^2)}{2(q - b)}$		Applies circle equation to eliminate p^2 and q^2	dM1	3

$= \frac{r^2 + a(p-a) + b(q-b)}{(q-b)}$	Rearranges and factorises appropriately	dM1;	3
$m = -\frac{p-a}{q-b} \Longrightarrow m^2 + 1 = \frac{r^2}{(q-b)^2} \Longrightarrow$ $c = \frac{r^2}{q-b} + -ma + b = b - ma \pm r\sqrt{m^2 + 1} *$	Uses gradient to achieve correct result.	A1*	2
		(6)	
 Alternatives to (d) are possible, the first two marks will be the same in each. If relevant further progress is made, schemes will be issued when responses seen. Look out for e.g. Use of symmetry about y = 5 for two tangents which meet at on the <i>y</i>-axis. Use of ratio of radii to find the point of intersection of internal and external tangents. 			

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom